整数数组 nums 按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums 在预先未知的某个下标 k(0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], …, nums[n-1], nums[0], nums[1], …, nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。
给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。
解题思路:
题目要求O(logN) 的时间复杂度,基本可以断定本题是需要使用二分查找,怎么分是关键。
由于题目说数字了无重复,举个例子:
1 2 3 4 5 6 7 可以大致分为两类,
第一类 2 3 4 5 6 7 1 这种,也就是 nums[start] <= nums[mid]。此例子中就是 2 <= 5。
这种情况下,前半部分有序。因此如果 nums[start] <=target<nums[mid],则在前半部分找,否则去后半部分找。
第二类 6 7 1 2 3 4 5 这种,也就是 nums[start] > nums[mid]。此例子中就是 6 > 2。
这种情况下,后半部分有序。因此如果 nums[mid] <target<=nums[end],则在后半部分找,否则去前半部分找
代码:
public int search(int[] nums, int target) {
if(nums.length == 0){
return -1;
}
if(nums.length == 1 && target == nums[0]){ //特判
return 0 ;
}
int left = 0 ;
int right = nums.length-1;
while(left <= right){
int mid = (left+right)/2;
if(nums[mid] == target){
return mid;
}
if(nums[mid] < nums[right]){//证明右边有序
if(nums[mid] < target && nums[right] >= target){//判断是否在右边区间
left = mid+1;
}else{ //否则在左边区间
right = mid-1;
}
}else {
if(nums[mid]>target &&nums[left] <= target){//判断是否在左边区间
right = mid-1;
}else{//否则就是在右边区间.
left = mid+1;
}
}
}
return -1;
}