【题目描述】
【思路】
贪心
有解决方案的前提是:所有小岛都被雷达覆盖即 |yi| <=d
假设岛屿为(x,y),以(x,y)为圆心,半径为d,如果其能被海岸线的雷达(t,0)覆盖,则满足(x - t)^ 2 +y ^ 2 = d^2,t属于[x -sqrt(d * d - y * y),x+ sqrt(d * d - y * y)]。 每一个岛屿对应x轴上的一条线段,雷达就是线段上的点,从而将二维问题转化为一维问题。
对所有线段按照右区间升序排序,如果所有线段都没有交集那么雷达最小数目就是岛屿个数。当选定一个雷达之后,下一段区间的起始点在上一个雷达的右边,那么这个岛屿就不在 上个雷达的覆盖范围,则需要加入新的雷达
import java.util.Scanner;
import java.lang.Math;
import java.util.Arrays;
class Segment implements Comparable<Segment>{
//区间[a,b]
double a, b;
public Segment(double aa, double bb)
{
a = aa;
b = bb;
}
public int compareTo(Segment o)
{
// TODO 自动生成的方法存根
return Double.compare(this.b, o.b);
}
}
public class Main{
static int N = 1010;
static double INF = 10e8;
static double esp = 10e-6;
static Segment seg[] = new Segment[N];
public static void main(String args[]){
Scanner reader = new Scanner(System.in);
int n = reader.nextInt(), d = reader.nextInt();
boolean success = true;
for(int i = 0; i < n; i++)
{
int x = reader.nextInt(), y = reader.nextInt();
if( Math.abs(y) > d )
{
success = false;
break;
}
//
double len = Math.sqrt(d * d - y * y);
seg[i] = new Segment(x - len, x + len);
}
if( ! success)
System.out.println( - 1);
else{
//按区间右端点升序排序
Arrays.sort(seg, 0, n);
//上一个雷达位置
double last = - INF;
int res = 0;
for(int i = 0; i < n; i++)
{
//下一段区间的起始点在上一个雷达的右边 即没有交集 则需要加入新的雷达
if(seg[i].a -last > esp)
{
res ++;
last = seg[i].b;
}
}
System.out.println(res);
}
}
}