题目
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
插入一个字符
删除一个字符
替换一个字符
示例 1:
输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:
输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
提示:
0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/edit-distance
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析
初始思路匹配两者最长子串,然后依次增加这个子串,或者删除字符
或者通过bfs递归做法,不过好像不太清楚咋换
后面做不出来,就直接去看了官方题解,讲的很清楚,不过里面似乎有一点小错误,不过不影响整体理解。
在此复述一遍思路:先判断题目中的三种操作分别对应几种操作,
1. 对A插入一个字符与删除B的一个字符等价
2. 对A删除一个字符与插入B的一个字符等价
3. 替换A的字符和替换B的字符等价
于是将六种状态转换为三种状态。设dp[i][j]
表示单词A和单词B长度分别为ij的之间的距离,那么这个方程是由dp[i-1][j]+1
或者由dp[i][j-1]+1
或者“由dp[i-1][j-1]+1||dp[i-1][j-1]
看Ai是否与Bj相等”三个状态转过来,最后考虑边界情况,对于dp[i][0]
,它的长度为i,对于dp[0][j]
,它的长度为j。最终得到算法解
代码
class Solution {
public:
int minDistance(string word1, string word2) {
int n1=word1.length(),n2=word2.length();
int dp[510][510];
if(n1*n2==0)
return n1+n2;
dp[0][0]=0;
memset(dp,0,sizeof(dp));
// dp[n1][0]=n1;
// dp[0][n2]=n2;
//cout<<word2[0];
for(int i=0;i<=n1;i++)
dp[i][0]=i;
for(int j=0;j<=n2;j++)
dp[0][j]=j;
for(int i=1;i<=n1;i++)
{
for(int j=1;j<=n2;j++)
{
if(word1[i-1]==word2[j-1])
dp[i][j]=1+min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]-1));
else
dp[i][j]=1+min(dp[i-1][j],min(dp[i][j-1],dp[i-1][j-1]));
}
}
// for(int i=0;i<=n1;i++)
// {
// for(int j=0;j<=n2;++j)
// cout<<dp[i][j]<<" ";
// cout<<endl;
// }
return dp[n1][n2];
}
};