[CVPR2020] Uninformed Students: Student–Teacher Anomaly Detection with Discriminative Latent Embeddings
会议:CVPR 2020
连接:[1911.02357] Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings (arxiv.org)
作者:Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger
1. Intro
用teacher-students框架做无监督的异常检测
这篇文章基于两个假设:
- 在仅包含正常样本的数据集上,让pretrained的teacher模型去教没有pretrain的student模型,使得teacher模型和student模型输出的embedding尽可能一致。那么在inference时,由于teacher只教过student如何embed正常样本,所以正常样本上teacher模型和student模型输出的embedding会比较相似,但异常样本上两者输出的embedding差异会比较大;
- 如果在1中的训练过程中,采用多个随即初始化的students模型和一个pretrained teacher模型,那么在正常样本上students之间的embedding