【论文笔记】【CVPR2020】【异常检测 】Uninformed Students: Student–Teacher Anomaly Detection

[CVPR2020] Uninformed Students: Student–Teacher Anomaly Detection with Discriminative Latent Embeddings

会议:CVPR 2020
连接:[1911.02357] Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings (arxiv.org)
作者:Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger

1. Intro

在这里插入图片描述

用teacher-students框架做无监督的异常检测

这篇文章基于两个假设:

  1. 在仅包含正常样本的数据集上,让pretrained的teacher模型去教没有pretrain的student模型,使得teacher模型和student模型输出的embedding尽可能一致。那么在inference时,由于teacher只教过student如何embed正常样本,所以正常样本上teacher模型和student模型输出的embedding会比较相似,但异常样本上两者输出的embedding差异会比较大;
  2. 如果在1中的训练过程中,采用多个随即初始化的students模型和一个pretrained teacher模型,那么在正常样本上students之间的embedding
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值