【论文笔记】【CVPR2022】【异常检测】Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection

[CVPR2022] (SSPCAB)Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection

CVPR 2022
Link: [2111.09099] Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection (arxiv.org)
Code: ristea/sspcab (github.com)

1. Intro

在这里插入图片描述

提出了**self-supervised predictive convolutional attentive block (SSPCAB),**使用masked 卷积核和channel注意力机制,执行一个重构masked信息的自监督任务用于训练,原始特征经过该block达到增强特征的效果(让特征在正常和异常图上的差异变大,因为只在正常图像上训练)

SSPCAB可以整合到任何CNN架构的任何层中(⭐)

在当前video和image AD的SOTA模型中加入SSPCAB可以提高检测效果。


2. Method

SSPCAB = masked conv layer + Squeeze-and-Excitation (SE) module

Motivation:

现有的CNN框架能提取到一个层次化的特征,从low-level(边、角)到high-level(语义特征,如车轮、鸟头等),但是缺乏一种把这些局部特征整合起来的能力。因此提出SSPCAB进行一个reconstruction自监督学习任务来学习这些局部特征的global structure。使用了dilated masked convolution kernel 和 channel attention module

2.1 Masked convolution

请添加图片描述

一个kernel包含四个sub-kernel,只有这四个sub-kernel参与运算。

每个sub-kernel的大小为 k ’ k’ k

dilation rate 为 d d d

感受野的中心为 M M M,大小为1

所以,整个kernel大小为 k = 2 k ’ + 2 d + 1 k=2k’+2d+1 k=2k+2d+1

四个sub-kernal的输出做sum作为M位置(mask)的输出,输出是一个单值
(zero-padding = k ’ + d k’+d k+d,stride = 1 1 1

因为通道数为 c c c,所以需要 c c c 个大kernel

输入( X X X)和输出( Z Z Z)的维度不变。

2.2 Channel attention module

在这里插入图片描述

对于Masked convolution的输出,想要探究通道之间的关系,施加注意力在更重要的通道上,使用了 Hu e t   a l et\ al et al提出的SE(Squeeze-and-Excitation)module,一种在channel维自适应重新校准的机制(channel attnetion)。

SE相关解读可以阅读:

解读Squeeze-and-Excitation Networks(SENet) - 知乎 (zhihu.com)

Attention module

先对feature map( z z z)先进行GAP(Globle Average Pooling): h ∗ w ∗ c → 1 ∗ 1 ∗ c h*w*c→1*1*c hwc11c

再经过两个FC,第一个加ReLU,第二个加sigmoid,先降维再升维度( c → c / r → c c→c/r→c cc/rc )得到一组channel attention权重。

再将该权重加载原始feature map的各个通道上输出( s s s),保持输入输出维度不变。
在这里插入图片描述

在这里插入图片描述

2.3 Reconstruction loss

使用自监督学习方法重构masked区域来训练block

重构结果和目标计算MSE作为loss

在这里插入图片描述

总loss为模型原始loss L F L_F LF L S S P C A B L_{SSPCAB} LSSPCAB

在这里插入图片描述


3. Experiment

3.1 在Avenue数据集上调参

后续实验选择: k ’ = 1 k’=1 k=1 d = 1 d=1 d=1, MSE Loss,Attention module中 r = 8 r=8 r=8,使用channel attention module

在这里插入图片描述

3.2 Image AD

dataset:MVTec-AD

在DRAEM和CutPaste上加入SSPCAB进行实验,结果有所提高。

但不是SOTA。

在这里插入图片描述

在这里插入图片描述

3.3 Video AD

dataset:Avenue & ShanghaiTech

SOTA

在这里插入图片描述

3.4 Inference Time

在这里插入图片描述


4 Ablation

4.1 将SSPCAB放在网络的不同置

结论:放在后面好一点

在这里插入图片描述

4.2 使用不同大小的mask M

结论:没啥区别

在这里插入图片描述


5 Limitation

将SSPCAB放在靠近输入的位置没啥效果

  • 13
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值