一、题目
假设有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花不能种植在相邻的地块上,它们会争夺水源,两者都会死去。
给你一个整数数组 flowerbed
表示花坛,由若干 0
和 1
组成,其中 0
表示没种植花,1
表示种植了花。另有一个数 n
,能否在不打破种植规则的情况下种入 n
朵花?能则返回 true
,不能则返回 false
。
示例 1:
输入:flowerbed = [1,0,0,0,1], n = 1 输出:true
示例 2:
输入:flowerbed = [1,0,0,0,1], n = 2 输出:false
提示:
1 <= flowerbed.length <= 2 * 104
flowerbed[i]
为0
或1
flowerbed
中不存在相邻的两朵花0 <= n <= flowerbed.length
二、分析过程
-
贪心策略:算法尝试在每个可能的位置插入一朵花,但遵循一个贪心的选择——只在当前位置和相邻位置都是空地(值为0)的情况下才插入花朵。这种策略确保了插入花朵时不违反题目中的规则(即花朵不能种植在相邻的地块上)。
-
边界处理:通过在数组的两端添加0,算法可以确保即使在花坛的边缘位置也能应用同样的逻辑来插入花朵。这种边界处理避免了在数组的开始和结束位置出现特殊情况,简化了逻辑。
三、参考代码
class Solution:
def canPlaceFlowers(self, flowerbed: List[int], n: int) -> bool:
# 在花坛的两端添加0,确保边界情况也能处理
flowerbed = [0] + flowerbed + [0]
t = 0 # 记录可以插入的花朵数量
# 遍历花坛,寻找可以插入花朵的位置
for i in range(1, len(flowerbed) - 1):
# 如果当前位置及相邻位置都是空的,则可以插入一朵花
if flowerbed[i - 1] == 0 and flowerbed[i] == 0 and flowerbed[i + 1] == 0:
flowerbed[i] = 1 # 在当前位置插入花朵
t += 1 # 增加可以插入花朵的计数
if t >= n: # 如果已经插入了足够的花朵,提前结束循环
return True
# 检查是否插入了足够的花朵
return t >= n