基于Python深度学习的鲨鱼识别分类系统

摘要:鲨鱼是海洋环境健康的指标,但受到过度捕捞和数据缺乏的挑战。传统的观察方法成本高昂且难以收集数据,特别是对于具有较大活动范围的物种。论文讨论了如何利用基于媒体的远程监测方法,结合机器学习和自动化技术,来填补鲨鱼种群评估中的信息空白。提出了一个包含53,345张鲨鱼图片的数据库,覆盖了219种鲨鱼,并开发了一个名为“Shark Detector”的软件包,利用PyQt5设计了简约的系统UI界面,使用迁移学习和卷积神经网络(CNN)来自动识别和快速分类鲨鱼种类。

关键词:数据挖掘、图像分类、机器学习、远程监测、鲨鱼识别

参考文献:Shark detection and classification with machine learning, Jenrette et al., 2022.

  1. 研究背景及意义

鲨鱼作为海洋生态系统的关键指示物种,其种群的健康状况直接反映了海洋环境的生态平衡。然而,由于鲨鱼的广泛分布和大范围的活动习性,传统的科学调查和渔业监测方法在收集鲨鱼种群数据时面临巨大挑战。这些方法不仅成本高昂,而且难以捕捉到足够的信息,特别是对于个体数量和分布情况的精确评估。

缺乏详尽的数据支持,科学家和保护工作者难以对鲨鱼种群进行有效的状态评估和趋势预测。这种情况限制了保护措施的制定和执行,导致许多鲨鱼物种的保护状况不容乐观。随着IUCN受威胁物种数量的增加,迫切需要新的监测手段来填补数据空白,提高对鲨鱼种群动态的了解。

随着计算机视觉和机器学习技术的发展,特别是卷积神经网络(CNN)在图像识别领域的突破,为鲨鱼等海洋生物的自动检测和分类提供了新的技术手段。通过训练算法识别鲨鱼的特征,可以自动化地从大量图像和视频中提取有用信息,这不仅提高了数据处理的效率,也为海洋生物多样性监测提供了新的解决方案。

社交媒体和公共科学项目的兴起为生物多样性监测提供了新的数据来源。公众拍摄的鲨鱼照片和视频,尤其是通过Instagram等平台分享的内容,构成了一个庞大的图像库。利用机器学习算法对这些数据进行挖掘和分析,可以为鲨鱼研究提供宝贵的补充信息,同时也促进了科学研究与公众参与的结合。

  1. 研究方法

  2. 数据库构建:研究团队创建了一个包含53,345张鲨鱼图片的数据库,涵盖了219种鲨鱼。这些图片主要来源于社交媒体、公民科学项目、用户提交和其他电子档案。

  3. Shark Detector开发:开发了一个名为“Shark Detector”的软件包,它集成了对象检测和图像分类模型。该软件包使用迁移学习和卷积神经网络(CNN)技术来自动识别和分类视频中和图像中的鲨鱼。

  4. 模型组成:

  • Shark Locator (SL):对象检测模型,用于在图像和视频中定位鲨鱼并绘制边界框。

  • Shark Identifier (SI):二元排序模型,用于从混合图像集中筛选出鲨鱼图像。

  • Shark Classifiers (SCs):多类模型,用于将鲨鱼图像分类到属和物种级别。

  1. 训练与验证:使用来自sharkPulse的数据和其他来源的图像训练模型。通过迁移学习,利用预训练的网络(如VGG16和DenseNet201)来提高训练效率和准确性。

  2. 数据增强:采用图像增强技术,如平移、剪切、缩放和旋转,提高模型的泛化能力。

 

 

图1 鲨鱼探测器系统由对象检测和分类软件包组成,以循序渐进的方式达到最佳效果。此外,通过检测鲨鱼主体,鲨鱼定位器可以合成鲨鱼识别器和鲨鱼分类器模型所需的剪切鲨鱼图像,作为新的训练数据补充到sharkPulse档案中。视频按照定位、识别和分类的顺序进行处理。异构数据挖掘数据集按照先识别后分类的顺序进行处理。

 

 

 

图2 SL物体探测模型根据鲨鱼出现的置信度绘制方框。(a) 检测到一条短鳍鲭鲨幼鱼,并对单张自动裁剪图像进行处理,去除饵罐和蓝鳍金枪鱼等无关物体。(b) 检测到多个胭脂鱼物种,并从单张图像中裁剪出两张图像。

 

 

 

图3 由SI识别的图像以及随后由SC进行的分类。(a) 通过对水下照片、有前景和背景噪声的图像、难以辨认鲨鱼特征的图像以及8个不同物种进行分类,SI和SC正确识别了各种鲨鱼图像。(b) SI错误分类的常见对象,如鲸目动物(以及其他海洋和陆地动物)、空旷的前景、难以辨认的物体和假鲨鱼。(c) 由于部分特征被掩盖,SI会错过鲨鱼的出现。

  1. 结果分析

  2. 分类能力:Shark Detector能够对47种鲨鱼进行分类。

  3. 准确性测试:

  • 在处理诱饵远程摄像机镜头和YouTube视频时,Shark Detector在定位鲨鱼方面的准确率达到了89%。

  • 在将定位到的鲨鱼分类到物种层面时,准确率为69%。

  1. Instagram数据集:在Instagram上收集的异构数据集中,Shark Identifier以91%的准确率筛选出鲨鱼图像,并将这些图像分类到物种层面的准确率达到了70%。

  2. 性能评估:研究评估了Shark Detector在不同数据生成方法中的性能,包括在sharkPulse数据集中的定位、在线视频的处理,以及Instagram数据的挖掘。

  3. 软件性能:Shark Detector在没有人工交互的情况下处理了所有数据生成方法,展示了其自动化处理的能力。

  4. 模型改进:研究指出,随着向训练数据集添加更多图像,软件流水线的预测准确性会提高,这表明模型性能有进一步优化的空间。

通过这些方法和结果,本研究展示了Shark Detector作为一个强大的工具,能够自动化地从各种媒体来源中识别和分类鲨鱼,为鲨鱼保护和生态研究提供了新的技术支持。简而言之,图4概述了通过不同模型和参数测量的SD系统在鲨鱼图像分类方面的性能,包括不同类别的准确性、训练数据集大小的影响以及模型的可靠性。

 

 

 

图4 Shark Detector(SD)系统组件的性能测量结果。(a) 对13个鲨鱼属类的分类准确性(GSC)进行了测量,发现随着训练数据集大小的增加,其准确性可以用一个双参数渐近模型来拟合,渐近曲线表示每个类别在模型中可能达到的最大召回率。(b) 测量了7个物种类别和两个包含数据较少的Carcharhinus sp.和Sphyrna sp.的类别(SSCg)的分类准确性。(c) 展示了12个GSC类别的训练数据集大小阈值分布,排除了Prionace属,因为它的召回率从未达到50%,曲线表示正态分布的密度。(d) 展示了9个SSCg类别的训练数据集大小阈值分布,这些类别的属包含超过两个物种。(e) 展示了所有SD组件的性能,包括SSCg模型的标准误差区间。(f) 展示了所有18个SSCg模型的准确性分布。

  1. PyQt5可视化软件

本节详细介绍如何以上述CNN网络为主干,实现对鲨鱼种类的检测识别,且利用PyQt5设计了简约的系统UI界面。在界面中,您可以选择自己的视频文件、图片文件进行检测。此外,您还可以更换自己训练的主干模型,进行自己数据的检测。该系统界面优美,检测精度高,功能强大。它具备多目标实时检测,同时可以自由选择感兴趣的检测目标。本文提供了完整的Python程序代码和使用教程,适合新入门的朋友参考,包括用户登录界面(注册登录和修改密码),管理员主界面(用户账户信息、查看历史资源和鲨鱼种类百科),普通用户界面(上传历史记录、鲨鱼图像识别和鲨鱼种类百科),以及鲨鱼识别界面(图片和视频)。

 

 

 

 

 

 

 

 

 

 

 

图5 基于深度学习的鲨鱼识别分类系统演示界面

 

### 使用CLIP模型或其他方法进行图像直线检测与提取 #### CLIP模型简介 CLIP (Contrastive Language-Image Pre-training) 是一种多模态预训练模型,主要用于联合理解文本和图像。尽管它并非专门设计用于几何特征(如直线)的检测,但可以通过其强大的视觉表示能力间接辅助完成此类任务。 然而,在实际应用中,针对特定需求如直线检测的任务,通常会采用更专业的计算机视觉技术或深度学习框架来实现。以下是几种常见的直线检测方法及其代码实现: --- #### 方法一:Hough Transform(霍夫变换) 霍夫变换是一种经典的图像处理算法,广泛应用于直线检测任务中。通过将边缘点映射到参数空间并寻找峰值位置,可以高效地识别出图像中的直线。 ```python import cv2 import numpy as np def hough_transform(image_path, threshold=100): # 加载图像并转换为灰度图 image = cv2.imread(image_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 边缘检测 edges = cv2.Canny(gray, 50, 150, apertureSize=3) # 应用霍夫变换 lines = cv2.HoughLines(edges, rho=1, theta=np.pi / 180, threshold=threshold) result_lines = [] if lines is not None: for line in lines: rho, theta = line[0] a = np.cos(theta) b = np.sin(theta) x0 = a * rho y0 = b * rho x1 = int(x0 + 1000 * (-b)) y1 = int(y0 + 1000 * (a)) x2 = int(x0 - 1000 * (-b)) y2 = int(y0 - 1000 * (a)) result_lines.append(((x1, y1), (x2, y2))) cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) return image, result_lines # 调用函数 detected_image, detected_lines = hough_transform('input_image.jpg') cv2.imwrite('output_with_lines.jpg', detected_image) ``` 这种方法简单有效,适用于大多数场景下的直线检测[^4]。 --- #### 方法二:基于深度学习的直线检测 对于复杂背景或噪声较多的情况,传统方法可能表现不佳。此时可考虑利用深度学习模型进行端到端的直线检测。例如,使用 LaneNet 的变体网络结构可以直接预测车道线的概率分布,并进一步拟合成具体直线方程。 ##### 实现思路 1. **数据准备** 构建包含标注直线的数据集,其中每条直线由一组像素坐标定义。 2. **模型架构** 借助 U-Net 或其他语义分割网络作为基础骨架,输出概率热图后再通过后处理得到最终直线。 3. **损失函数设计** 结合交叉熵损失与回归损失共同优化模型性能。 ```python from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, UpSampling2D, concatenate def build_lane_detection_model(input_shape=(256, 512, 3)): inputs = Input(shape=input_shape) conv1 = Conv2D(64, 3, activation='relu', padding='same')(inputs) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(128, 3, activation='relu', padding='same')(pool1) up1 = UpSampling2D(size=(2, 2))(conv2) merged = concatenate([conv1, up1], axis=-1) output = Conv2D(1, 1, activation='sigmoid')(merged) model = Model(inputs=[inputs], outputs=[output]) return model model = build_lane_detection_model() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) ``` 上述代码片段展示了如何构建一个简单的编码器-解码器结构用于直线检测任务[^1]。 --- #### 方法三:结合CLIP模型的解决方案 虽然 CLIP 不直接支持直线检测功能,但它能够提供高质量的图像嵌入向量,从而帮助筛选潜在含有直线的目标区域。随后再配合传统CV工具完成精细化操作。 流程如下: 1. 利用 CLIP 提取感兴趣对象的相关性分数; 2. 对高分候选框执行局部增强处理; 3. 运用前述提到的技术定位内部存在的显著线条。 注意此方案更适合解决开放域内的泛化型挑战而非精确测量类问题[^5]。 --- ### 总结 综上所述,无论是依赖经典图像处理手段还是引入先进的人工神经网络体系,都能满足不同程度上的直线提取诉求。开发者应依据项目特性灵活选取最适配策略组合加以实践验证效果最佳者。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CAE320

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值