概念
- 数学期望:随机变量的均值 E ( X ) = ∑ X ∗ p ( X ) E(X)=\sum X*p(X) E(X)=∑X∗p(X)
- 方差:随机变量的离散程度 S 2 = ∑ ( X − X ‾ ) 2 n − 1 S^2=\frac{\sum (X-\overline X)^2}{n-1} S2=n−1∑(X−X)2
- 协方差:随机变量的相关性,正相关 C o v ( X , Y ) > 0 Cov(X,Y)>0 Cov(X,Y)>0
二项分布
X
∼
B
(
n
,
p
)
E
(
X
)
=
∑
μ
=
n
p
D
(
X
)
=
∑
σ
=
n
p
(
1
−
p
)
C
o
v
(
X
,
Y
)
=
E
(
X
Y
)
−
E
(
X
)
E
(
Y
)
(
n
=
1
)
C
o
v
(
X
,
Y
)
=
n
(
p
b
−
p
X
p
Y
)
X\sim B(n,p)\\ E(X)=\sum \mu=np\\ D(X)=\sum \sigma=np(1-p)\\ Cov(X,Y)=E(XY)-E(X)E(Y)(n=1)\\ Cov(X,Y)=n(p_b-p_Xp_Y)
X∼B(n,p)E(X)=∑μ=npD(X)=∑σ=np(1−p)Cov(X,Y)=E(XY)−E(X)E(Y)(n=1)Cov(X,Y)=n(pb−pXpY)
分布律:
P
{
X
=
k
}
=
C
n
k
p
k
(
1
−
p
)
n
−
k
P\{ X=k \}=C_n^kp^k(1-p)^{n-k}
P{X=k}=Cnkpk(1−p)n−k
从n中选出k个,选中的概率是p的k次方,其余n-k个没选中的概率是1-p
泊松分布
用以描述单位时间内随机事件的发生次数。
X
∼
π
(
λ
)
P
(
X
=
k
)
=
λ
k
k
!
e
−
λ
,
k
=
0
,
1
⋅
⋅
⋅
Φ
(
t
)
=
e
x
p
{
λ
(
e
i
t
−
1
)
}
E
(
X
)
=
λ
e
−
λ
∑
k
=
1
∞
λ
k
−
1
(
k
−
1
)
!
=
λ
e
−
λ
e
λ
=
λ
D
(
X
)
=
E
(
X
2
)
−
(
E
(
X
)
)
2
=
λ
(
λ
+
1
)
−
λ
2
=
λ
X\sim\pi(\lambda)\\ P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1\cdot\cdot\cdot\\ \Phi(t)=exp\{\lambda(e^{it}-1)\}\\ E(X)=\lambda e^{-\lambda }\sum_{k=1}^{\infty } \frac{\lambda ^{k-1}}{(k-1)!}=\lambda e^{-\lambda }e^{\lambda }=\lambda\\ D(X)=E(X^2)-(E(X))^2=\lambda(\lambda+1)-\lambda^2=\lambda
X∼π(λ)P(X=k)=k!λke−λ,k=0,1⋅⋅⋅Φ(t)=exp{λ(eit−1)}E(X)=λe−λk=1∑∞(k−1)!λk−1=λe−λeλ=λD(X)=E(X2)−(E(X))2=λ(λ+1)−λ2=λ
泊松分布的期望和方差都是
λ
\lambda
λ
均匀分布
X ∼ U ( a , b ) X\sim U(a,b) X∼U(a,b)其中概率密度 f ( x ) = 1 b − a ( a < x < b ) f(x)=\frac{1}{b-a}(a<x<b) f(x)=b−a1(a<x<b),取其它值f(x)=0
指数分布
X ∼ E ( λ ) X\sim E(\lambda) X∼E(λ)其中概率密度 f ( x ) = λ e − λ x ( x > 0 ) f(x)=\lambda e^{-\lambda x}(x>0) f(x)=λe−λx(x>0)取其它值f(x)=0
正态分布
对于一维的正态分布:若X服从一个位置参数为
μ
\mu
μ,尺度参数为
σ
\sigma
σ的概率分布,则概率密度为
f
(
x
)
=
1
2
π
σ
e
x
p
(
−
(
x
−
μ
)
2
2
σ
2
)
或
写
成
f
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma ^2})\\或写成\\ f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma ^2}}
f(x)=2πσ1exp(−2σ2(x−μ)2)或写成f(x)=2πσ1e−2σ2(x−μ)2
此时这个随机变量X就是正态随机变量,正态随机变量服从的分布就是正态分布记作:
X
∼
N
(
μ
,
σ
2
)
X\sim N(\mu ,\sigma ^2)
X∼N(μ,σ2)
如果
μ
=
0
,
σ
=
1
\mu=0,\sigma = 1
μ=0,σ=1的情况,正态分布就是标准正态分布
f
(
x
)
=
1
2
π
e
−
x
2
2
f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}
f(x)=2π1e−2x2