【Hydro】概率分布

概念

  1. 数学期望:随机变量的均值 E ( X ) = ∑ X ∗ p ( X ) E(X)=\sum X*p(X) E(X)=Xp(X)
  2. 方差:随机变量的离散程度 S 2 = ∑ ( X − X ‾ ) 2 n − 1 S^2=\frac{\sum (X-\overline X)^2}{n-1} S2=n1(XX)2
  3. 协方差:随机变量的相关性,正相关 C o v ( X , Y ) > 0 Cov(X,Y)>0 Cov(X,Y)>0

二项分布

X ∼ B ( n , p ) E ( X ) = ∑ μ = n p D ( X ) = ∑ σ = n p ( 1 − p ) C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) ( n = 1 ) C o v ( X , Y ) = n ( p b − p X p Y ) X\sim B(n,p)\\ E(X)=\sum \mu=np\\ D(X)=\sum \sigma=np(1-p)\\ Cov(X,Y)=E(XY)-E(X)E(Y)(n=1)\\ Cov(X,Y)=n(p_b-p_Xp_Y) XB(n,p)E(X)=μ=npD(X)=σ=np(1p)Cov(X,Y)=E(XY)E(X)E(Y)(n=1)Cov(X,Y)=n(pbpXpY)
分布律:
P { X = k } = C n k p k ( 1 − p ) n − k P\{ X=k \}=C_n^kp^k(1-p)^{n-k} P{X=k}=Cnkpk(1p)nk
从n中选出k个,选中的概率是p的k次方,其余n-k个没选中的概率是1-p

泊松分布

用以描述单位时间内随机事件的发生次数。
X ∼ π ( λ ) P ( X = k ) = λ k k ! e − λ , k = 0 , 1 ⋅ ⋅ ⋅ Φ ( t ) = e x p { λ ( e i t − 1 ) } E ( X ) = λ e − λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! = λ e − λ e λ = λ D ( X ) = E ( X 2 ) − ( E ( X ) ) 2 = λ ( λ + 1 ) − λ 2 = λ X\sim\pi(\lambda)\\ P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1\cdot\cdot\cdot\\ \Phi(t)=exp\{\lambda(e^{it}-1)\}\\ E(X)=\lambda e^{-\lambda }\sum_{k=1}^{\infty } \frac{\lambda ^{k-1}}{(k-1)!}=\lambda e^{-\lambda }e^{\lambda }=\lambda\\ D(X)=E(X^2)-(E(X))^2=\lambda(\lambda+1)-\lambda^2=\lambda Xπ(λ)P(X=k)=k!λkeλ,k=0,1Φ(t)=exp{λ(eit1)}E(X)=λeλk=1(k1)!λk1=λeλeλ=λD(X)=E(X2)(E(X))2=λ(λ+1)λ2=λ
泊松分布的期望和方差都是 λ \lambda λ

均匀分布

X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)其中概率密度 f ( x ) = 1 b − a ( a < x < b ) f(x)=\frac{1}{b-a}(a<x<b) f(x)=ba1(a<x<b),取其它值f(x)=0

指数分布

X ∼ E ( λ ) X\sim E(\lambda) XE(λ)其中概率密度 f ( x ) = λ e − λ x ( x > 0 ) f(x)=\lambda e^{-\lambda x}(x>0) f(x)=λeλx(x>0)取其它值f(x)=0

正态分布

对于一维的正态分布:若X服从一个位置参数为 μ \mu μ,尺度参数为 σ \sigma σ的概率分布,则概率密度为
f ( x ) = 1 2 π σ e x p ( − ( x − μ ) 2 2 σ 2 ) 或 写 成 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}exp(-\frac{(x-\mu)^2}{2\sigma ^2})\\或写成\\ f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma ^2}} f(x)=2π σ1exp(2σ2(xμ)2)f(x)=2π σ1e2σ2(xμ)2
此时这个随机变量X就是正态随机变量,正态随机变量服从的分布就是正态分布记作:
X ∼ N ( μ , σ 2 ) X\sim N(\mu ,\sigma ^2) XN(μ,σ2)
如果 μ = 0 , σ = 1 \mu=0,\sigma = 1 μ=0,σ=1的情况,正态分布就是标准正态分布
f ( x ) = 1 2 π e − x 2 2 f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} f(x)=2π 1e2x2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值