推荐系统学习笔记(四)--基于向量的召回

离散特征处理

离散特征:性别,国籍,英文单词,物品id,用户id

处理:

建立字典:eg:china = 1

向量化:eg:one-hot /embedding(低维稠密向量)

one-hot--适合低维度

例如:

性别:男,女

字典:男 = 1,女 = 2

one-hot:

        未知[0 , 0]

        男 [1 , 0]

        女 [0 , 1]

one-hot局限:

例1: nlp中,对单词编码,维度上万

例2:推荐系统中,对物品id编码,上亿笔记

类别数量很大时,不用one-hot

embedding(嵌入)

例子:国籍embeddding

参数数量:向量维度 * 类别数量

embedding : 4 * 200 = 800

embedding层:参数以矩阵形式保存,大小为:向量维度 * 类别数量

输入:序号,eg:美国序号为2

输出:向量,eg:美国对应参数矩阵第二列

神经网络关键在于embedding层,对它的优化是一个关键点

one-hot和embedding关系

embedding = one-hot * 参数矩阵

矩阵补充(目前不常用)

训练:

用户embedding层,矩阵A,每个用户对应一列

物品embedding层,矩阵B,每个物品对应一列

内积就是第u个用户对第i个商品兴趣的预估值

训练的目的:学习矩阵A和B

数据集:(用户id a,物品id b,真实兴趣分数 y)------>三元组

优化问题:min\sum (y-<a,b>)^2

行:用户,列:物品,灰色位置表示未曝光,绿色位置代表分数

为什么叫矩阵补充?

大多数都是灰色的,我们并不知道这些用户对这些物品的兴趣,用绿色的部分训练,得到矩阵AB,将灰色部分补全,补全之后就可以给用户做推荐了

工业界不用

缺点:

1.没有利用物品和用户的属性,仅仅使用了id做embedding

2.负样本选取方式不对:

        正样本:曝光后点击

        负样本:曝光后未点击(这是一个“想当然”的设计,其实不对,工业界不采用,后面会详细讲如何构造负样本)

3.训练的方法不好,内积不如余弦相似度,平方损失(回归)不如交叉熵损失(分类)判断正负样本

线上服务

模型存储

训练得到的矩阵AB可能会很大,A--用户,B---物品

矩阵A:

        存到key-value表,key是用户id,value是A的一列。

矩阵B:

        比较复杂

线上服务

1.利用用户id,查找kv表,得到向量a

2.最近邻查找:查找最有可能的k个物品

        物品的embedding向量bi,计算内积<a,bi>,返回最大的k个物品

缺点:时间复杂度正比于物品数量,暴力枚举导致无法实时运转。

如何加速

近似最近邻查找

定义标准:余弦相似度最大(常用) or 内积最大 or 欧氏距离小。

如果系统不支持计算余弦相似度:

将向量归一化(二范数等于1),此时计算出的内积就等于余弦相似度。

方法:

1.数据预处理:分成多个区域,每个区域用一个长度为1的单位向量表示,建立索引,向量作为key,点列表作为value,给定一个向量,就可以返回区域内所有点。

如何划分:余弦相似度---扇形,欧氏距离---多边形

2.线上快速找回:用户向量a,与所有单位索引向量对比,计算相似度,找到最相似的,通过索引,找到所有点,再计算所有点的相似度

  • 9
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值