MMOE+ESSM 另外,Gate网络最后的输出会经过softmax进行归一化。Gate网络最后一层全连接层经过softmax归一化后的输出,对应作用到每一个expert上(图2中GateA输出的红、紫、绿三条线分别作用与expert0,expert1,expert2),注意是通过广播机制作用到expert中的每一个隐藏单元,比如红线作用于expert0的2个隐藏单元。这里gate网络的作用非常类似于attention机制,提供了权重。
常用指标和损失总结 求解 L1 损失的问题通常比求解 L2 损失的问题更难。L1 损失的优化问题是一个非凸问题,而 L2 损失的优化问题是一个凸问题。由于其凸性,L2 损失的优化问题(如最小二乘法)通常更容易解决,并且有多种有效的算法(如梯度下降、牛顿法等)。精确度(precision)/查准率:TP/(TP+FP)=TP/P 预测为真中,实际为正样本的概率。当模型的稀疏性非常重要时,例如在文本分析或生物信息学中,L1 损失是一个很好的选择。当模型的参数需要保留非零值,并且对异常值不太敏感时,L2 损失是一个更常用的选择。
Exploiting Static and Dynamic Human Joint Relations for 3D Pose Estimation via Cascade Transformers Transformer已经成为自然语言处理(NLP)中的主导模型。研究人员最近试图利用Transformer架构进行各种计算机视觉任务,并取得了有竞争力的结果。然而,很少有工作已经做了探索Transformer架构的三维人体姿态估计(HPE)。在这项工作中,我们提出了级联变压器,一种新的基于变压器的方法,从一个单一的图像三维HPE。具体而言,我们的级联变压器包括两个变压器编码器,分别利用静态和动态的人类关节关系。利用自我注意力模块和级联结构,我们的方法全面模拟静态和动态人体关节关系。
mac双屏时程序坞跑到副屏的解决方法 (2) 鼠标回到主屏,放在主屏正下方中间的边缘不要动,主屏能看到扩展坞出现了;(3) 按下 option+command+D,锁定其到主屏;(1) 按下 option+command+D,开启。“自动隐藏”,副屏程序坞消失;
推荐系统学习笔记(三) Q:假如重合的用户是一个小圈子:在一个群里,毫无关联的笔记也会被同时交互solve:降低小圈子权重--------------swing的主要目的------------给用户加权相似度:a是人工参数,overlap降低小圈子对相似度的影响。
推荐系统学习笔记(二) 1.给定用户id,用户->物品,找到用户近期感兴趣的物品列表(last-n)2.对于last-n中的每个物品,物品->物品,找到top-k相似物品。用户对物品j的兴趣 * 物品j与候选物品的相似度。3.对上面的物品(最多nk个),计算兴趣分数。4.返回分数最高的100个物品,作为推荐结果。没有考虑用户喜欢物品的程度。计算相似度 (0,1)量化用户对物品的兴趣。相似:受众有无重合、索引的意义:避免枚举。
推荐系统学习笔记(一) 同类策略(精排中的两种模型)天然互斥,并且(两条召回通道)效果会相互影响,避免干扰。反转:有的指标立刻影响,有的需要长期观测-------尽快推全也可以长期观测。10%作为holdout桶,实验使用剩余的90%,做diff(需要归一化)不同策略(添加召回通道,优化粗排模型)通常不会干扰,可以作为正交的两层。保留10%,完全不受实验影响,可以考察整个部门对业务指标的贡献。同层互斥----避免一个用户被两个实验影响。不同层正交----每层独立随机分配用户。推全:新层,与其他层正交,90%用户。