--好好学算法--
码龄6年
关注
提问 私信
  • 博客:34,986
    社区:1
    34,987
    总访问量
  • 78
    原创
  • 49,464
    排名
  • 126
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2019-04-06
博客简介:

weixin_44880995的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    4
    当前总分
    613
    当月
    0
个人成就
  • 获得215次点赞
  • 内容获得12次评论
  • 获得226次收藏
  • 代码片获得359次分享
创作历程
  • 22篇
    2024年
  • 62篇
    2023年
成就勋章
TA的专栏
  • 推荐算法
    10篇
  • 深度学习
    6篇
  • leetcode刷题
    13篇
  • c++
    30篇
  • 代码实战
    2篇
  • 文献
    15篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

182人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

MMOE+ESSM

另外,Gate网络最后的输出会经过softmax进行归一化。Gate网络最后一层全连接层经过softmax归一化后的输出,对应作用到每一个expert上(图2中GateA输出的红、紫、绿三条线分别作用与expert0,expert1,expert2),注意是通过广播机制作用到expert中的每一个隐藏单元,比如红线作用于expert0的2个隐藏单元。这里gate网络的作用非常类似于attention机制,提供了权重。
原创
发布博客 2024.08.20 ·
730 阅读 ·
15 点赞 ·
0 评论 ·
28 收藏

集成学习总结

集成学习
原创
发布博客 2024.07.18 ·
690 阅读 ·
17 点赞 ·
0 评论 ·
17 收藏

常用指标和损失总结

求解 L1 损失的问题通常比求解 L2 损失的问题更难。L1 损失的优化问题是一个非凸问题,而 L2 损失的优化问题是一个凸问题。由于其凸性,L2 损失的优化问题(如最小二乘法)通常更容易解决,并且有多种有效的算法(如梯度下降、牛顿法等)。精确度(precision)/查准率:TP/(TP+FP)=TP/P 预测为真中,实际为正样本的概率。当模型的稀疏性非常重要时,例如在文本分析或生物信息学中,L1 损失是一个很好的选择。当模型的参数需要保留非零值,并且对异常值不太敏感时,L2 损失是一个更常用的选择。
原创
发布博客 2024.07.18 ·
338 阅读 ·
5 点赞 ·
0 评论 ·
1 收藏

attention机制

attention整理
原创
发布博客 2024.07.18 ·
725 阅读 ·
36 点赞 ·
0 评论 ·
26 收藏

岛屿数量dfs

dfs
原创
发布博客 2024.07.02 ·
205 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

推荐系统-FM模型

FM
原创
发布博客 2024.06.25 ·
456 阅读 ·
5 点赞 ·
0 评论 ·
5 收藏

深度优先搜索(dfs)模版题

dfs
转载
发布博客 2024.06.25 ·
73 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

推荐系统GBDT+LR

GBDT+LR
原创
发布博客 2024.06.24 ·
714 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

刷题记录(240619)

刷题记录
原创
发布博客 2024.06.19 ·
348 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

刷题记录(240613)

aliyun0512
原创
发布博客 2024.06.13 ·
496 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

Exploiting Static and Dynamic Human Joint Relations for 3D Pose Estimation via Cascade Transformers

Transformer已经成为自然语言处理(NLP)中的主导模型。研究人员最近试图利用Transformer架构进行各种计算机视觉任务,并取得了有竞争力的结果。然而,很少有工作已经做了探索Transformer架构的三维人体姿态估计(HPE)。在这项工作中,我们提出了级联变压器,一种新的基于变压器的方法,从一个单一的图像三维HPE。具体而言,我们的级联变压器包括两个变压器编码器,分别利用静态和动态的人类关节关系。利用自我注意力模块和级联结构,我们的方法全面模拟静态和动态人体关节关系。
原创
发布博客 2024.06.13 ·
744 阅读 ·
21 点赞 ·
0 评论 ·
7 收藏

刷题记录(240612)

xiecheng1.给定两个正整数x和p,要求从x中提取出所有的奇数位数字组成一个新数,然后将这个新数对p取模,并输出结果。
原创
发布博客 2024.06.12 ·
196 阅读 ·
6 点赞 ·
0 评论 ·
3 收藏

推荐系统学习笔记(五)-----双塔模型

双塔模型
原创
发布博客 2024.06.11 ·
617 阅读 ·
8 点赞 ·
0 评论 ·
2 收藏

刷题记录(0528)

小红书笔试(0528)
原创
发布博客 2024.06.06 ·
575 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

刷题记录(20240605)

刷题记录
原创
发布博客 2024.06.05 ·
494 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

mac双屏时程序坞跑到副屏的解决方法

(2) 鼠标回到主屏,放在主屏正下方中间的边缘不要动,主屏能看到扩展坞出现了;(3) 按下 option+command+D,锁定其到主屏;(1) 按下 option+command+D,开启。“自动隐藏”,副屏程序坞消失;
转载
发布博客 2024.05.29 ·
2262 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

推荐系统学习笔记(四)--基于向量的召回

离散特征:性别,国籍,英文单词,物品id,用户id处理:建立字典:eg:china = 1向量化:eg:one-hot /embedding(低维稠密向量)
原创
发布博客 2024.05.21 ·
600 阅读 ·
9 点赞 ·
0 评论 ·
4 收藏

推荐系统学习笔记(三)

Q:假如重合的用户是一个小圈子:在一个群里,毫无关联的笔记也会被同时交互solve:降低小圈子权重--------------swing的主要目的------------给用户加权相似度:a是人工参数,overlap降低小圈子对相似度的影响。
原创
发布博客 2024.05.21 ·
496 阅读 ·
10 点赞 ·
0 评论 ·
2 收藏

推荐系统学习笔记(二)

1.给定用户id,用户->物品,找到用户近期感兴趣的物品列表(last-n)2.对于last-n中的每个物品,物品->物品,找到top-k相似物品。用户对物品j的兴趣 * 物品j与候选物品的相似度。3.对上面的物品(最多nk个),计算兴趣分数。4.返回分数最高的100个物品,作为推荐结果。没有考虑用户喜欢物品的程度。计算相似度 (0,1)量化用户对物品的兴趣。相似:受众有无重合、索引的意义:避免枚举。
原创
发布博客 2024.05.16 ·
151 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

推荐系统学习笔记(一)

同类策略(精排中的两种模型)天然互斥,并且(两条召回通道)效果会相互影响,避免干扰。反转:有的指标立刻影响,有的需要长期观测-------尽快推全也可以长期观测。10%作为holdout桶,实验使用剩余的90%,做diff(需要归一化)不同策略(添加召回通道,优化粗排模型)通常不会干扰,可以作为正交的两层。保留10%,完全不受实验影响,可以考察整个部门对业务指标的贡献。同层互斥----避免一个用户被两个实验影响。不同层正交----每层独立随机分配用户。推全:新层,与其他层正交,90%用户。
原创
发布博客 2024.05.15 ·
215 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏
加载更多