利用CNN进行图片简单分类

利用CNN进行图片简单6分类,数据集为6中车型网上爬取的,这里进行一系列数据预处理后,进行CNN卷积。

数据集部分展示
在这里插入图片描述
在这里插入图片描述
代码展示

#encoding = utf-8
"""
@author:syj
@file:img_分类.py
@time:2019/09/27 14:05:47
"""
#导库
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import cv2
from sklearn.model_selection import train_test_split

# 使用GPU
import os
os.environ["CUDA_VISIBLE_DEVICES"]= "3"

# 随机种子
tf.set_random_seed(77)

# 数据集路径
cat_dir = r'C:\Users\Administrator\Desktop\car_datas\车1'

#数据读取转换为矩阵   标签分类
def load_data(name_class):
    num = 0                 #数据集总数
    images_data = []        #样本
    labels_data = []        #标签

    # 循环读取
    for i in name_class:
        for k in os.listdir((cat_dir + '/' + i)):           #得到图片名字   房车_0.jpg
            img = plt.imread(cat_dir + '/' + i + '/' + k)   #plt可以读取中文
            img = cv2.resize(img, (64,64))                  #所有图片转化为64*64*3
            img_array = np.array(img)                       #转化为数组
            img_array = img_array / 127.5 - 1               #归一化    -11
            images_data.append(img_array)                   #添加到列表

            # 分类
            if k[:2] == '卡车':
                labels_data.append(0)
            elif k[:2] == '房车':
                labels_data.append(1)
            elif k[:2] == '摩托':
                labels_data.append(2)
            elif k[:2] == '自行':
                labels_data.append(3)
            elif k[:2] == '越野':
                labels_data.append(4)
            else:
                labels_data.append(5)
            num += 1                    #数据集总数
    img_array = np.array(images_data)
    lab_array = np.array(labels_data)

    return img_array,lab_array,num

name_class = os.listdir(cat_dir)        #路径
print(name_class)

num_class = len(name_class)

# 洗牌
def shuffle_data(imgage_data,labels_data,num):
    p = np.random.permutation(num)
    imgage_data = imgage_data[p]
    labels_data = labels_data[p]
    return imgage_data,labels_data

# 调用
imgage_data,labels_data,num = load_data(name_class)
imgage_data,labels_data = shuffle_data(imgage_data,labels_data,num)

print(imgage_data.shape)
print(labels_data.shape)

# 切分
train_x,test_x,train_y,test_y = train_test_split(imgage_data,labels_data,test_size=0.2,random_state=7)

# 站位
x = tf.placeholder(tf.float32,[None,64,64,3])
y = tf.placeholder(tf.int64,[None])

# 失活   全连接防止过拟合
keep_prob = tf.placeholder(tf.float32)

# 根据批次切分
x_image_arr = tf.split(x,num_or_size_splits=100,axis=0)

result_x_image_arr = []

# 循环读取优化数据
for x_single_image in x_image_arr:
    x_single_image = tf.reshape(x_single_image,[64,64,3])
    #随机翻转
    data_aug_1 = tf.image.random_flip_left_right(x_single_image)
    #调整光照
    data_aug_2 = tf.image.random_brightness(data_aug_1,max_delta=63)
    #改变对比度
    data_aug_3 = tf.image.random_contrast(data_aug_2,lower=0.2,upper=1.8)
    #白化
    data_aug_4 = tf.image.per_image_standardization(data_aug_3)
    x_single_image = tf.reshape(data_aug_4,[1,64,64,3])
    result_x_image_arr.append(x_single_image)
result_x_images = tf.concat(result_x_image_arr,axis=0)

# 全连接
conv1 = tf.layers.conv2d(result_x_images,32,(3,3),padding='same',activation=tf.nn.relu)
conv1 = tf.layers.batch_normalization(conv1,momentum=0.7)       #防止过拟合
pooling1 = tf.layers.max_pooling2d(conv1,(2,2),(2,2))

conv2 = tf.layers.conv2d(pooling1,64,(3,3),padding='same',activation=tf.nn.relu)
conv2 = tf.layers.batch_normalization(conv2,momentum=0.7)
pooling2 = tf.layers.max_pooling2d(conv2,(2,2),(2,2))

conv3 = tf.layers.conv2d(pooling2,128,(3,3),padding='same',activation=tf.nn.relu)
conv3 = tf.layers.batch_normalization(conv3,momentum=0.7)
pooling3 = tf.layers.max_pooling2d(conv3,(2,2),(2,2))

flatten = tf.layers.flatten(pooling3)

# 全连接
fc = tf.layers.dense(flatten,625,activation=tf.nn.tanh)
fc = tf.nn.dropout(fc,keep_prob=keep_prob)
a5 = tf.layers.dense(fc,6)

# 代价
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y,logits=a5)

# 优化器
optimizer = tf.train.AdamOptimizer(0.00005).minimize(cost)

# 准确率
pre = tf.argmax(a5,1)
accuracy = tf.reduce_mean(tf.cast(tf.equal(pre,y),tf.float32))

sess = tf.Session()
sess.run(tf.global_variables_initializer())

# 利用批次循环训练
step = 0
for i in range(1,3001):
    c,a,_ = sess.run([cost,accuracy,optimizer],feed_dict={x:train_x[step:step+100],y:train_y[step:step+100],keep_prob:0.7})

    step += 100

    if step >= train_x.shape[0]:
        step = 0

    if i % 500 == 0:
        print(i,np.mean(c),a)

step1 = 0
all_acc = []
for i in range(5):
    a1 = sess.run(accuracy,feed_dict={x:test_x[step1:step1+100],y:test_y[step1:step1+100],keep_prob:1})
    step1 += 100
    all_acc.append(a1)
print(np.mean(all_acc))

效果展示

['房车', '自行车图片', '跑车', '越野车', '摩托车', '卡车']

(2752, 64, 64, 3)
(2752,)

300 0.8921075 0.67
600 0.6069706 0.81
900 0.30461997 0.92
1200 0.3142417 0.93
1500 0.16324146 0.98
1800 0.08101442 0.99
2100 0.08600599 0.99
2400 0.040265616 1.0
2700 0.035595465 1.0
3000 0.016259683 1.0
0.764


刚入手代码精度还在调,后期持续更新
  • 0
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
MNIST数据集是一个手写数字的图片数据集,包含60,000张训练图片和10,000张测试图片。每张图片大小为28x28像素,灰度图像,数字0-9均有表示。 卷积神经网络CNN是一种深度学习模型,可以有效地进行图像分类。在MNIST数据集上,我们可以使用一个简单CNN模型来进行分类。 1. 数据预处理 首先,我们需要将MNIST数据集加载到程序中,并进行预处理。我们可以使用Keras库中的mnist.load_data()函数来加载数据集,然后将像素值归一化到0-1的范围内: ```python from keras.datasets import mnist from keras.utils import to_categorical # 加载数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 数据预处理 x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. # 将标签转换为one-hot编码 y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) ``` 2. 定义CNN模型 接下来,我们需要定义一个CNN模型来对MNIST数据集进行分类。我们可以使用Keras库来构建模型。 CNN模型通常由卷积层、池化层和全连接层组成。在MNIST数据集上,我们可以使用以下模型: ```python from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense # 定义CNN模型 model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(10, activation='softmax')) ``` 这个模型包含三个卷积层和两个全连接层。卷积层用于提取图像的特征,池化层用于减小特征图的大小,全连接层用于将特征图映射到类别标签。 3. 训练模型 在定义好模型之后,我们需要对模型进行训练。我们可以使用Keras库中的compile()函数来编译模型,并使用fit()函数来训练模型。 ```python # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train.reshape(-1, 28, 28, 1), y_train, epochs=5, batch_size=64, validation_data=(x_test.reshape(-1, 28, 28, 1), y_test)) ``` 在训练模型时,我们需要将输入数据的形状从(60000, 28, 28)转换为(60000, 28, 28, 1),因为Keras默认的卷积层输入需要四个维度。 4. 评估模型 训练模型后,我们需要对模型进行评估。我们可以使用evaluate()函数来评估模型的性能。 ```python # 评估模型 score = model.evaluate(x_test.reshape(-1, 28, 28, 1), y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 在MNIST数据集上,我们可以得到约99%的准确率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值