cnn分类图像cifar10

使用CNN模型来分类图像,数据集采用的cifar10,cifar10共有6万张,这些图像共分为10类。

命名的格式大概是这样的:0_19761.jpg,它的第一个数字表示的就是图像所属的类,分成清楚的就知道了,第0类就是飞机。

加载数据集

这里我们使用pillow的函数来读取图像,使用numpy.array将其转换为矩阵的数据格式,这样这张图片就变成了数字,接着将其转换为pytorch当中的tensor,我们都知道图像数据它是0到255之间的整数,对于神经网络来说,使用较小的数字更加有利于计算,所以将值域压缩到0到1之间,简单来说就是在转换成tensor时,将其除以255,这样读取后的矩阵就变为了32x32x3,但在torch当中通常是将通道数放在前面,变形的方式采用permute,使用参数(2,0,1),将原始张量 x 的维度重新排列。对于y就是读取文件名的第一个数字即可。

import torch


def load_data():
    import PIL.Image
    import numpy as np
    import os

    xs = []
    ys = []

    #遍历文件夹下的所有文件
    for filename in os.listdir('data/cifar10'):

        #只要图片,过滤一些无关的文件
        if not filename.endswith('.jpg'):
            continue

        #读取图片信息
        x = PIL.Image.open('data/cifar10/%s' % filename)

        #转矩阵,数值压缩到0-1之间
        x = torch.FloatTensor(np.array(x)) / 255

        #变形,把通道放前面
        #[32, 32, 3] -> [3, 32, 32]
        x = x.permute(2, 0, 1)

        #y来自文件名的第一个字符
        y = int(filename[0])

        xs.append(x)
        ys.append(y)

    return xs, ys


xs, ys = load_data()

print(len(xs), len(ys), xs[0].shape, ys[0])

定义数据集

我们对数据集进行一个封装,便于后续的遍历

#定义数据集
class Dataset(torch.utils.data.Dataset):

    def __len__(self):
        return len(xs)

    def __getitem__(self, i):
        return xs[i], ys[i]


dataset = Dataset()

x, y = dataset[0]

print(len(dataset), x.shape, y)

定义loader

loader = torch.utils.data.DataLoader(dataset=dataset,
                                     batch_size=8,
                                     shuffle=True,
                                     drop_last=True)

x, y = next(iter(loader))

print(len(loader), x.shape, y)

(7500, torch.Size([8, 3, 32, 32]), tensor([5, 1, 6, 6, 4, 7, 5, 1]))

这里来看下数据的样例,可以看到在一批数据中,x是8张图片3通道32x32的尺寸,y就是八个数字,分别表示了x当中8张图片分别属于哪一类。

一般CNN模型的计算过程

输入当然是一张图片,经过卷积的运算,会把图像的尺寸缩小,通道数增多,那么这个计算结果就叫做特征图,在这个特征图上进行降采样,也就是池化,池化的结果一般是比较明确的,就是把这个图像的尺寸缩小了,缩小后在进行卷积,卷积后的图像尺寸进一步缩小,通道数增多,可能会有再次的降采样,再次的卷积,反复多次后,最后这个图像的尺寸会变得非常的小,通道数会变得非常多,计算到最后图像尺寸会变成1x1的,也就是每个通道数上只有一个像素,但通道数很多甚至几百上千,那么计算到这里之后图像的尺寸已经是1了,所以实际上我们将二维的图像变成了一维的向量,这样就可以输入全连接神经网络当中进行分类的计算了。 

定义模型

先来看初始化部分,这个神经网络模型一共包括了6个层,分别是三个CNN,一个pooling,1个relu,还有一个FC,这些神经网络层我们会在后面的计算时用到

class Model(torch.nn.Module):

    def __init__(self):
        super().__init__()

        #520的卷积层
        self.cnn1 = torch.nn.Conv2d(in_channels=3,
                                    out_channels=16,
                                    kernel_size=5,
                                    stride=2,
                                    padding=0)

        #311的卷积层
        self.cnn2 = torch.nn.Conv2d(in_channels=16,
                                    out_channels=32,
                                    kernel_size=3,
                                    stride=1,
                                    padding=1)

        #710的卷积层
        self.cnn3 = torch.nn.Conv2d(in_channels=32,
                                    out_channels=128,
                                    kernel_size=7,
                                    stride=1,
                                    padding=0)

        #池化层
        self.pool = torch.nn.MaxPool2d(kernel_size=2, stride=2)

        #激活函数
        self.relu = torch.nn.ReLU()

        #线性输出层
        self.fc = torch.nn.Linear(in_features=128, out_features=10)

    def forward(self, x):

        #第一次卷积,形状变化可以推演
        #[8, 3, 32, 32] -> [8, 16, 14, 14]
        x = self.cnn1(x)
        x = self.relu(x)

        #第二次卷积,因为是311的卷积,所以尺寸不变
        #[8, 16, 14, 14] -> [8, 32, 14, 14]
        x = self.cnn2(x)
        x = self.relu(x)

        #池化,尺寸减半
        #[8, 32, 14, 14] -> [8, 32, 7, 7]
        x = self.pool(x)

        #第三次卷积,因为核心是7,所以只有一步计算
        #[8, 32, 7, 7] -> [8, 128, 1, 1]
        x = self.cnn3(x)
        x = self.relu(x)

        #展平,便于线性计算,也相当于把图像变成向量
        #[8, 128, 1, 1] -> [8, 128]
        x = x.flatten(start_dim=1)

        #线性计算输出
        #[8, 128] -> [8, 10]
        return self.fc(x)


model = Model()

print(model(torch.randn(8, 3, 32, 32)).shape)

在计算部分,我们来看输入的数据,第一次卷积8张图三通道32x32尺寸,输入到卷积层,CNN的卷积结果让图像的尺寸缩小,通道数增多,然后进行激活,负数归0。接下来,进行CNN2的计算,311是这组参数是非常经典的,在CNN当中也是经常使用,结果是通道数增多而尺寸不变。然后进行一个池化的计算,图像的尺寸减半,然后再次的进行CNN计算,这里的CNN3的kernel size是7,所以在每一步计算的时候实际只计算了一步,图像的尺寸变成了1,通道数变为了128。然后调用flatten,变为8个128维的向量,然后进行线性的输出。

训练模型

这里遍历五次全量数据,训练的过程是非常标准化的,从loader当中获取数据,然后模型计算loss,,再对模型的参数进行调整。

def train():
    optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
    loss_fun = torch.nn.CrossEntropyLoss()
    model.train()

    for epoch in range(5):
        for i, (x, y) in enumerate(loader):
            out = model(x)
            loss = loss_fun(out, y)

            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

            if i % 2000 == 0:
                acc = (out.argmax(dim=1) == y).sum().item() / len(y)
                print(epoch, i, loss.item(), acc)

    torch.save(model, 'model/5.model')

测试

这里测试100批数据,最后的正确率是78%,虽然不是很高,但是验证了我们训练的过程是有效的。

@torch.no_grad()
def test():
    model = torch.load('model/5.model')
    model.eval()

    correct = 0
    total = 0
    for i in range(100):
        x, y = next(iter(loader))

        out = model(x).argmax(dim=1)

        correct += (out == y).sum().item()
        total += len(y)

    print(correct / total)

 

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: CIFAR-10是一个包含10个类别共60,000张32x32彩色图像的数据集,每个类别有6,000张。这个数据集被广泛用于计算机视觉中的图像分类问题。 卷积神经网络(CNN)是常用于图像分类的深度学习模型。下面是一个基本的CIFAR-10图像分类CNN模型的代码示例: ```python import tensorflow as tf from tensorflow.keras import datasets, layers, models # 加载数据集 (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() # 将像素值缩放到0到1之间 train_images, test_images = train_images / 255.0, test_images / 255.0 # 定义模型 model = models.Sequential() model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3))) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.MaxPooling2D((2, 2))) model.add(layers.Conv2D(64, (3, 3), activation='relu')) model.add(layers.Flatten()) model.add(layers.Dense(64, activation='relu')) model.add(layers.Dense(10)) # 编译模型 model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) # 训练模型 history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels)) # 评估模型 test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2) print(test_acc) ``` 这个模型包含3个卷积层和2个全连接层。在训练过程中,我们使用了Adam优化器和交叉熵损失函数。在测试集上的准确率达到了大约70%。你可以尝试调整模型的结构和超参数来提高准确率。 ### 回答2: CIFAR-10图像分类是利用卷积神经网络(Convolutional Neural Network, CNN)对CIFAR-10数据集进行图像分类的任务。CIFAR-10数据集包含10个不同类别的60000个32x32彩色图像,每个类别有6000个图像CNN是一种专门用于图像分类任务的深度学习模型。 首先,我们需要对CIFAR-10数据集进行预处理。预处理的步骤包括图像的加载、归一化处理和标签的转换。加载图像后,我们可以对图像进行归一化处理,将像素值缩放到0到1之间,以使模型更易训练。然后,我们需要将类别标签转换为独热编码形式,使得模型可以正确识别类别。 接下来,构建CNN模型。CNN模型由卷积层、池化层和全连接层组成。卷积层通过使用一组卷积核对输入图像进行特征提取,提取到的特征在后续的层中进行进一步处理。池化层用于对特征进行下采样,减少特征的维度。全连接层则用于将特征与类别进行映射,最终给出分类结果。 在训练CNN模型之前,我们需要将数据集分为训练集和测试集,通常采用70%的数据作为训练集,30%的数据作为测试集。接着,我们使用训练集对CNN模型进行训练,通过反向传播算法不断更新模型的参数,使其能够更好地适应训练集的特征。在训练过程中,一般会使用交叉熵作为损失函数,优化算法常用的是随机梯度下降法。 训练完成后,我们使用测试集对模型进行评估。通过将测试图像输入到训练好的模型中,可以得到模型对测试图像分类结果。将模型的分类结果与测试集中的真实标签进行比对,可以计算出模型的准确率等评价指标。 总结起来,CIFAR-10图像分类CNN流程主要包括数据预处理、模型构建、训练和评估。通过对这些步骤的不断优化和调整,可以得到一个能够准确分类CIFAR-10图像CNN模型。 ### 回答3: CIFAR-10是一个广泛使用的图像分类数据集,其中包含10个不同类别的60000个32x32彩色图片,用于训练和测试机器学习模型。为了解决CIFAR-10图像分类问题,使用CNN(卷积神经网络)是一种常见且有效的方法。 CNN使用多个卷积层、池化层和全连接层来提取图像的特征并分类。其原理是通过学习和提取图像中的局部特征来实现分类。在CNN中,卷积层将使用一组滤波器对输入图像进行卷积运算,以捕捉不同的局部特征。池化层用于减小特征图的空间大小,减少参数数量,并提高模型的鲁棒性。最后,全连接层将对提取的特征进行分类,以确定图像属于哪个类别。 对于CIFAR-10数据集,可以根据实际需求选择合适的CNN模型进行训练和分类。常见的CNN模型包括LeNet-5、AlexNet、VGG Net和ResNet等。从简单到复杂的顺序选择CNN模型,可以根据任务的复杂性和计算资源的可用性来确定。 在训练CNN模型时,通常使用随机梯度下降(SGD)等优化算法来最小化损失函数,使模型能够逐渐学习并提高分类性能。此外,数据增强技术如翻转、旋转和平移等也常用于增加训练数据的多样性,提高模型的泛化能力。 最后,在对测试集进行评估时,可使用准确率、精确率、召回率和F1得分等指标来衡量模型的性能。对于CIFAR-10数据集,训练一个高准确率的CNN模型可能需要相当长的时间和计算资源。 总之,CIFAR-10图像分类问题是一个挑战性的任务,但使用CNN模型可以有效地解决该问题。使用适当的CNN模型和训练技巧,可以实现较高的分类性能和泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天是冰红茶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值