格上困难问题

  • 以方阵B为基底,格 L ( B ) L(B) L(B) B ∈ R n × n ,    L ( B ) = { B x ∣ x ∈ Z n } B \in R^{n \times n},\,\,L(B) = \{Bx|x \in Z^{n}\} BRn×n,L(B)={BxxZn}

    • L L L是线性空间 R n R^{n} Rn加法子群 (并非子空间,子空间是连续的)
    • L L L离散的,即 ∀ x ∈ L \forall x \in L xL x x x的邻域 { y ∣ ϵ ≥ ∥ y − x ∥ } ∩ L \{y|\epsilon \ge\Vert y-x \Vert\} \cap L {yϵyx}L上只有 x x x本身。
  • 给定格 L L L的一组基底 B B B,任意的幺模矩阵 U ∈ Z n × n ,   d e t ( U ) = ± 1 U \in Z^{n \times n},\, det(U) = \pm 1 UZn×n,det(U)=±1 B U BU BU也是 L L L的一组基底。

  • 给定格 L L L的一组格基 B B B,定义基本平行体 P ( B ) = ∑ i B i ⋅ [ − 0.5 , 0.5 ) P(B)=\sum_i B_i \cdot [-0.5,0.5) P(B)=iBi[0.5,0.5),以原点为中心。格的行列式 d e t ( L ) : = V o l ( P ( B ) ) = d e t ( B ) det(L):=Vol(P(B))=det(B) det(L):=Vol(P(B))=det(B);更换基底 B U BU BU d e t ( L ) det(L) det(L)保持不变。

  • n维格 L L L,定义 λ i ( L ) ,   1 ≤ i ≤ n \lambda_i(L),\, 1 \le i \le n λi(L),1in是第 i i i最短向量的长度。

  • M i n k o w s k i Minkowski Minkowski定理 λ 1 ( L ) ≤ ( ∏ i λ i ( L ) ) 1 n ≤ n ⋅ d e t ( L ) 1 n \lambda_1(L) \le (\prod_i \lambda_i(L))^{\frac{1}{n}} \le \sqrt n \cdot det(L)^{\frac{1}{n}} λ1(L)(iλi(L))n1n det(L)n1

  • 给定格 L L L,定义任一点 t t t到最近格点的距离函数为: μ ( t , L ) = min ⁡ x ∈ L ∥ t − x ∥ \mu(t,L)=\min\limits_{x \in L}\Vert t-x \Vert μ(t,L)=xLmintx,格的覆盖半径 μ ( L ) = max ⁡ t ∈ s p a n ( L ) μ ( t , L ) \mu(L) = \max\limits_{t \in span(L)} \mu(t,L) μ(L)=tspan(L)maxμ(t,L)

  • 将线性空间 R n R^n Rn模掉格 L L L,得到 R n / L R^n/L Rn/L,其中的元素是格 L L L的陪集 c + L ∈ R n / L ,   c ∈ P ( B ) c+L \in R^n/L,\, c \in P(B) c+LRn/L,cP(B)

高斯分布

  • 宽度s的高斯函数 (Gaussian function) ρ s : R n → R + \rho_s: R^n \rightarrow R^+ ρs:RnR+

ρ s ( x ) : = e − π ∥ x ∥ 2 s 2 = ρ ( x / s ) = ∏ i = 1 n ρ s ( x i ) \rho_s(x) := e^\frac{-\pi \Vert x \Vert^2}{s^2} = \rho(x/s) \\ =\prod_{i=1}^{n}\rho_s(x_i) ρs(x):=es2πx2=ρ(x/s)=i=1nρs(xi)

  • 高斯函数是初等函数,但没有初等不定积分。其实数轴上积分为:
    ∫ − ∞ + ∞ e − a x 2 d x = π a \int_{-\infty}^{+\infty} e^{-ax^2} dx = \sqrt \frac{\pi}{a} +eax2dx=aπ

  • 连续高斯分布 D s D_s Ds,其概率密度函数为:

f ( x ) = ρ s ( x ) / ∫ R n ρ s ( z ) d z = ρ s ( x ) s n f(x)=\rho_s(x) / \int_{R^n} \rho_s(z) dz = \dfrac{\rho_s(x)}{s^n} f(x)=ρs(x)/Rnρs(z)dz=snρs(x)

  • 离散高斯分布 D c + L , s D_{c+L,s} Dc+L,s,格陪集 c + L ⊂ R n c+L \sub R^n c+LRn,其概率密度函数为:
    D c + L , s ∝ { ρ s ( x ) i f    x ∈ x + L 0 i f    x ∉ x + L D_{c+L,s} \propto \left\{ \begin{aligned} \rho_s(x) && if\,\, x \in x+L\\ 0 && if\,\, x \not \in x+L\\ \end{aligned} \right. Dc+L,s{ρs(x)0ifxx+Lifxx+L

  • 平滑参数 η ϵ ( L ) \eta_\epsilon(L) ηϵ(L),关于误差 ϵ \epsilon ϵ,定义为最小的 s > 0 s > 0 s>0使得: ρ 1 s ( L ∗ ) ≤ 1 + ϵ \rho_{\frac{1}{s}}(L^*) \le 1+\epsilon ρs1(L)1+ϵ,其中 L ∗ L^* L L L L的对偶格。

    s ≥ η ϵ ( L ) s \ge \eta_\epsilon(L) sηϵ(L),每一个陪集 c + L c+L c+L的高斯质量 ρ s ( c + L ) : = ∑ x ∈ c + L ρ s ( x ) \rho_s(c+L):= \sum_{x \in c+L}\rho_s(x) ρs(c+L):=xc+Lρs(x)都几乎相同。

  • 一个随机变量是**亚高斯 ( S u b g a u s s i a n i t y Subgaussianity Subgaussianity) **的,是说它的分布以高斯分布为主。一般的,一个随机变量 X X X是参数为 s s s的亚高斯分布,那么对于任意的 t ≥ 0 t \ge 0 t0,都有:
    P r [ ∣ X ∣ > t ] ≤ 2 e − π t 2 s 2 Pr[|X|>t] \le 2e^\frac{-\pi t^2}{s^2} Pr[X>t]2es2πt2

格上困难问题

  • 最近向量问题 CVP

    给定任意一组格基 B B B,给定搜索距离 d d d,对于连续空间中任意一点 t ∈ R n t \in R^n tRn,在格 L = L ( B ) L=L(B) L=L(B)中寻找格点 B x ∈ L Bx \in L BxL,使得: ∥ B x ∥ ≤ d \Vert Bx \Vert \le d Bxd

    • BDD问题

      d ≤ λ 1 ( L ) / 2 d \le \lambda_1(L)/2 dλ1(L)/2,CVP问题最多有一个解;若有解 x x x,那么 B x ∈ L Bx \in L BxL是距离点 t t t最近的格点。

    • ADD问题

      d ≥ μ ( L ) d \ge \mu(L) dμ(L),CVP问题至少有一个解 x x x;但 B x ∈ L Bx \in L BxL不一定是距离点 t t t最近的格点。

  • 最短向量问题 SVP

    给定任意一组格基 B B B,在格 L = L ( B ) L=L(B) L=L(B)中寻找非零格点 B x ∈ L Bx \in L BxL,使得: ∥ B x ∥ = λ 1 ( L ) \Vert Bx \Vert = \lambda_1(L) Bx=λ1(L)

  • 最短线性无关向量问题 SIVP

    给定任意一组格基 B B B,在格 L = L ( B ) L=L(B) L=L(B)中寻找n个线性独立的向量 { B x i ,   1 ≤ i ≤ n } \{Bx_i,\, 1 \le i \le n\} {Bxi,1in},使得: max ⁡ i ∥ B x i ∥ ≤ λ n ( L ) \max\limits_{i} \Vert Bx_i \Vert \le \lambda_n(L) imaxBxiλn(L)

  • 最短整数解问题 SIS

    给定m个随机向量 a i ∈ Z q n a_i \in Z_q^n aiZqn,按列组合成矩阵 A ∈ Z q n × m A \in Z_q^{n \times m} AZqn×m;寻找一个非零向量 z ∈ Z m z \in Z^m zZm ∥ z ∥ ≤ β \Vert z \Vert \le \beta zβ,使得: f A ( z ) : = A z = ∑ i a i z i = 0 ∈ Z q n f_A(z):=Az = \sum_i a_i z_i = 0 \in Z_q^n fA(z):=Az=iaizi=0Zqn

    • 易知, z = ( q , 0 , . . . , 0 ) ∈ Z m z=(q,0,...,0) \in Z^m z=(q,0,...,0)Zm是平凡的解;设置 β < q \beta < q β<q

    • β ≥ n   l o g   q \beta \ge \sqrt{n\,log\,q} βnlogq m ≥ n   l o g   q m \ge n\,log\,q mnlogq时,SIS问题存在解。

    • 非齐次版本 A x = u ∈ Z q n Ax=u \in Z_q^n Ax=uZqn,与齐次版本 A x = 0 Ax=0 Ax=0等价。

  • 容错学习问题 LWE

    • LWE分布 A s , χ A_{s,\chi} As,χ:选定秘密向量 s ∈ Z q n s \in Z_q^n sZqn,随机均匀地选择 a ∈ Z q n a \in Z_q^n aZqn,从离散高斯分布中选择 e ← χ e \leftarrow \chi eχ,输出: ( a , b = < s , a > + e    m o d   q ) ∈ Z q n × Z q (a,b=<s,a>+e\,\,mod\,q) \in Z_q^n \times Z_q (a,b=<s,a>+emodq)Zqn×Zq

    • S e a r c h − L W E n , q , χ , m Search-LWE_{n,q,\chi,m} SearchLWEn,q,χ,m

      针对均匀随机变量 s ∈ Z q n s \in Z_q^n sZqn,给定m个 A s , χ A_{s,\chi} As,χ的独立采样 ( a i , b i ) (a_i,b_i) (ai,bi),寻找 s s s

    • D e c i s i o n − L W E n , q , χ , m Decision-LWE_{n,q,\chi,m} DecisionLWEn,q,χ,m

      给定m个独立采样 ( a i , b i ) ∈ Z q n × Z q (a_i,b_i) \in Z_q^n \times Z_q (ai,bi)Zqn×Zq,这些样本都来自如下两个分布之一:
      1). LWE分布 A s , χ A_{s,\chi} As,χ,对于固定的均匀随机数 s ∈ Z q n s \in Z_q^n sZqn
      2). Z q n × Z q Z_q^n \times Z_q Zqn×Zq上均匀分布。
      区分是哪一种情况。

    • 将m个采样按列组合成矩阵: A ∈ Z q n × m ,   b ∈ Z q m A \in Z_q^{n \times m},\, b \in Z_q^m AZqn×m,bZqm,其中 b t = s t A + e t ( m o d   q ) ,   e ∈ χ m b^t = s^t A+e^t (mod\, q),\, e \in \chi^m bt=stA+et(modq),eχm

  • Ring-SIS

    • 环的嵌入

      • c o e f f i c i e n t     e m b e d d i n g    σ : R → Z n coefficient\,\,\,embedding\,\,\sigma:R \rightarrow Z^n coefficientembeddingσ:RZn:给定环 R = Z [ x ] / ( f ( x ) ) R=Z[x]/(f(x)) R=Z[x]/(f(x)) z ∈ R z \in R zR 可表示为 Z [ x ] Z[x] Z[x]中至多n度的整系数多项式,将多项式系数作为n维向量。

        这是 n o n − c a n o n i c a l non-canonical noncanonical的,取 a , b ∈ R a,b \in R a,bR σ ( a + b ) , σ ( a b ) \sigma(a+b),\sigma(ab) σ(a+b),σ(ab) σ ( a ) , σ ( b ) \sigma(a),\sigma(b) σ(a),σ(b)之间的关系比较松,因为模 f ( x ) f(x) f(x)

      • c a n o n i c a l     e m b e d d i n g    σ : R → C n canonical\,\,\,embedding\,\,\sigma:R \rightarrow C^n canonicalembeddingσ:RCn:将每个元素 z ∈ R z \in R zR映射到向量 { z ( α i ) } i ∈ C n \{z(\alpha_i)\}_i \in C^n {z(αi)}iCn,其中 α i ∈ C \alpha_i \in C αiC f ( x ) f(x) f(x)的n个复数根, z ( ⋅ ) z(\cdot) z()是多项式求值。

        这是 c a n o n i c a l canonical canonical的,取 a , b ∈ R a,b \in R a,bR,有: σ ( a + b ) = σ ( a ) + σ ( b ) \sigma(a+b)=\sigma(a)+\sigma(b) σ(a+b)=σ(a)+σ(b) σ ( a b ) = σ ( a ) σ ( b ) \sigma(ab) = \sigma(a)\sigma(b) σ(ab)=σ(a)σ(b)

    • R = Z [ x ] / ( f ( x ) ) ,   f ( x ) = x n − 1   o r   f ( x ) = x 2 k + 1 R=Z[x]/(f(x)),\, f(x)=x^n-1\, or\, f(x)=x^{2^k}+1 R=Z[x]/(f(x)),f(x)=xn1orf(x)=x2k+1是n度多项式环。对于 z ∈ R z \in R zR,根据环的嵌入,定义 ∥ ⋅ ∥ \Vert \cdot \Vert ;对于向量 z → ∈ R m \overrightarrow{z} \in R^m z Rm,定义 ∥ z ∥ = ( ∑ i ∥ z i ∥ 2 ) 1 / 2 \Vert z \Vert = (\sum_i \Vert z_i \Vert^2)^{1/2} z=(izi2)1/2。定义 R q : = R / q R = Z q [ x ] / ( f ( x ) ) R_q := R/qR = Z_q[x]/(f(x)) Rq:=R/qR=Zq[x]/(f(x))

    • R − S I S q , β , m R-SIS_{q,\beta,m} RSISq,β,m

      给定m个均匀随机元素 a i ∈ R q a_i \in R_q aiRq,组合成向量 a ∈ R q m a \in R_q^m aRqm;寻找非零向量 z ∈ R m z \in R^m zRm,且 ∥ z ∥ ≤ β \Vert z \Vert \le \beta zβ,使得: f a ( z ) : = < a , z > = 0 ∈ R q f_a(z):=<a,z>=0 \in R_q fa(z):=<a,z>=0Rq

    • 易知, z = ( q ∈ R , 0 ∈ R , . . . , 0 ∈ R ) ∈ R m z=(q \in R,0 \in R,...,0 \in R) \in R^m z=(qR,0R,...,0R)Rm是平凡的解;设置 β < q \beta < q β<q

    • β ≥ n   l o g   q \beta \ge \sqrt{n\,log\,q} βnlogq m ≥ l o g   q m \ge log\,q mlogq时,R-SIS问题存在解。

  • Ring-LWE

    • Ring-LWE分布 A s , χ A_{s,\chi} As,χ:选定秘密 s ∈ R q s \in R_q sRq,随机均匀地选择 a ∈ R q a \in R_q aRq,从离散高斯分布中选择 e ← χ e \leftarrow \chi eχ,输出: ( a , b = s ⋅ a + e    m o d   q ) ∈ R q × R q (a,b=s \cdot a+e\,\,mod\,q) \in R_q \times R_q (a,b=sa+emodq)Rq×Rq

    • S e a r c h − R − L W E q , χ , m Search-R-LWE_{q,\chi,m} SearchRLWEq,χ,m

      针对均匀随机变量 s ∈ Z q n s \in Z_q^n sZqn,给定m个 A s , χ A_{s,\chi} As,χ的独立采样 ( a i , b i ) (a_i,b_i) (ai,bi),寻找 s s s

    • D e c i s i o n − R − L W E q , χ , m Decision-R-LWE_{q,\chi,m} DecisionRLWEq,χ,m

      给定m个独立采样 ( a i , b i ) ∈ R q × R q (a_i,b_i) \in R_q \times R_q (ai,bi)Rq×Rq,这些样本都来自如下两个分布之一:
      1). R-LWE分布 A s , χ A_{s,\chi} As,χ,对于固定的均匀随机数 s ∈ R q s \in R_q sRq
      2). R q × R q R_q \times R_q Rq×Rq上均匀分布。
      区分是哪一种情况。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值