目录
2.2 search-LWE/decision-LWE,GapSVP关系
一. 前言
格密码中有一个原语叫做multilinear map,常应用于code obfuscation,这个领域出现了非常多新设计的困难问题。但这些困难问题有一个致命的弱点,暂时不能实现最坏情况和一般情况的安全归约,所以不被一些密码学家承认。但这其实是一个常见的发展路径,早些年全同态依赖的困难问题也是特殊设计的,只是后来不断发展后可归约到标准的LWE/RLWE困难问题。
所以,本文章尝试梳理格密码论文中常用的困难问题之间的关系。具体对问题的解释可以看我之前的博客。
SIS | short integer solution | 短整数解问题 |
SVP | shortest vector problem | 最短向量问题 |
SIVP | shortest independent vectors problem | 最短线性独立向量问题 |
LWE | learning with errors | 容错学习问题 |
BDD | bounded distance decoding problem | 有限距离解码问题 |
GapSVP | decisional shortest vector problem | 判定性最短向量问题 |
二. 困难问题之间的关系
2.1 SIS,SVP,SIVP关系
给定,
可以看成q-ary垂直格
上平均情况的近似SVP问题。
有关q-ary格的解释,可以看这篇博客:
对于这个结论可以从两个角度理解。
角度1:随机选取一个矩阵,对于任意
,找到一个相对短的非零格点
。
角度2:找到一个非零的m维整数向量,使其满足如下:
当让模数取得足够大时,也就是,解决
问题的困难性与最坏情况下的
类似,其中
为近似因子。
此结论来源于以下四篇论文:
[Ajt96] M. Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica, 13:1–32, 2004.Preliminary version in STOC 1996
[MG02] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective,volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, 2002.
[MR04] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput., 37(1):267–302, 2007. Preliminary version in FOCS 2004.
[GPV08] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In STOC, pages 197–206. 2008.
2.2 search-LWE/decision-LWE,GapSVP关系
LWE问题中噪声的分布要求参数(通常为标准差)。先说结论,
问题可以看成平均情况下,q-ary格
上的BDD问题。之所以有个
,是因为后续均标准化,也就是模1.
把任意实数模1,形成的一个集合,该集合实际上为加法群:
将实数R上的高斯概率分布记为,其中
为标准差。
备注:格密码中的高斯分布标准差与数学中高斯分布标准差,相差
固定向量,均匀且随机取
,接着计算:
由于a在变动,可以形成很多样本,将其记为LWE分布,该分布的样本空间为
.
定义问题:
从中独立抽取
个样本,求s。
定义问题:
可能从中抽取一些样本,也可能从
中均匀且随机抽一些样本,判断样本来源。
密码学中要求区分的优势不可忽略。
从数学的角度来看,这两个问题差异很大。但其实密码学中已经有了很多的归约来证明两者的本质很类似。不同的归约之间大多参数选取不太一样。
当时,
在最坏情况下,可归约到
,遗憾的是这个过程需要用到量子归约。
LWE量子归约到SIVP问题,可以看这篇论文:
只有当q足够大时,才可归约到GapSVP和BDD问题。一般我们会认为GapSVP和BDD比SIVP问题要简单一点点。
LWE经典归约到GapSVP问题,可以这篇论文:
LWE经典归约到BDD问题,可以看这篇论文:
刚才我们是使用样本的角度来进行解释,如果将样本写在一起,就可以形成矩阵,也就是:
这三者之间的关系,如下:
这样b就可以是一个向量,与q-ary格上的格点,或者q-ary垂直格的对偶格上的格点相关。简单来讲就是,向量b是如下格的一个格点+一个高斯噪声:
实际上应用的时候,噪声为离散高斯分布,其标准差可以取
。
如果你看b中除以q不爽,也可以将其写为:
三. 备注
以上其实包含很多详细的归约过程,如果有人关注的话,以后再补上吧。