MATLAB+大学物理·绘制力矢量的合成与分解图

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

提示:这里可以添加本文要记录的大概内容:

MATLAB+大学物理,力的合成与分解示意图,使用quiver函数绘制矢量箭杆


提示:以下是本篇文章正文内容,下面案例可供参考

一、程序效果图

程序运行后如图:在这里插入图片描述

二、使用步骤

1.设置力的大小和方向

代码如下(示例):

clear,close all
% 输入力的大小和方向
F1_magnitude = 5;  % 第一个力的大小
F1_angle = 30;    % 第一个力的方向(相对于x轴的角度,单位:度)

F2_magnitude = 8;  % 第二个力的大小
F2_angle = 120;   % 第二个力的方向(相对于x轴的角度,单位:度)

% 将角度转换为弧度
F1_angle_rad = deg2rad(F1_angle);
F2_angle_rad = deg2rad(F2_angle);

% 合成力的矢量
F1_vector = F1_magnitude * [cos(F1_angle_rad), sin(F1_angle_rad)];
F2_vector = F2_magnitude * [cos(F2_angle_rad), sin(F2_angle_rad)];

% 总合成力
F_total = F1_vector + F2_vector;

2.图窗绘图

代码如下(示例):

% 创建一个新的图形窗口
figure;

% 绘制力1箭杆
quiver(0, 0, F1_vector(1), F1_vector(2), 0, 'b', 'LineWidth', 2);
hold on;

% 绘制力2箭杆
quiver(0, 0, F2_vector(1), F2_vector(2), 0, 'r', 'LineWidth', 2);

% 绘制合成力箭杆
quiver(0, 0, F_total(1), F_total(2), 0, 'g', 'LineWidth', 2);

% 绘制平行四边形
plot([0, F1_vector(1)], [0, F1_vector(2)], 'k--');
plot([F1_vector(1), F_total(1)], [F1_vector(2), F_total(2)], 'k--');
plot([F2_vector(1), F_total(1)], [F2_vector(2), F_total(2)], 'k--');

%绘制投影线
% projection_F1 = F1_vector - dot(F1_vector, F2_vector)/norm(F2_vector)^2 * F2_vector;%F1-F2
% quiver(0, 0, projection_F1(1), projection_F1(2), 0, 'm--', 'LineWidth', 1);
% projection_F2 = F2_vector - dot(F1_vector, F2_vector)/norm(F1_vector)^2 * F1_vector;
% quiver(0, 0, projection_F2(1), projection_F2(2), 0, 'c--', 'LineWidth', 1);

3.标注


% 标注夹角
angle_rad = acos(dot(F1_vector, F2_vector) / (norm(F1_vector) * norm(F2_vector)));
angle_deg = rad2deg(angle_rad);
text(0.5, -0.5, ['夹角: ', num2str(angle_deg), ' 度'], 'FontSize', 10);

% 标注矢量长度关系
text(F1_vector(1)/2, F1_vector(2)/2, ['F1/F2 = ', num2str(F1_magnitude/F2_magnitude)], 'FontSize', 10);

% 设置图形属性
axis equal;
grid on;
title('力矢量的合成与分解(平行四边形法则)made by光电面壁人');
xlabel('X轴');
ylabel('Y轴');

% 添加图例
legend('力1', '力2', '合成力', 'Location', 'Best');

% 显示图形
hold off;

总结

在MATLAB中绘制矢量箭杆可以用quiver函数

第1章小结 {范例1.1}通过质点的运动方程说明速度和加速度的数值计算方法。通过片说明:当时间间隔足够小的时候,速度和加速度的瞬时值可用平均值代替。 {范例1.2}通过质点的匀速圆周运动说明质点做二维曲线运动的速度和加速度的计算方法。质点的运动方程实际上是以时间为参数的轨道方程,运动方程还能说明质点的运动方向。通过片说明:当质点做匀速圆周运动时,速度和加速度的分量是周期性变化的,速度和加速度的大小是一个常数,而方向会发生跃变。 {范例1.3}通过质点的变速圆周运动说明法向加速度和切向加速度的计算方法。通过片说明质点的运动规律。 {范例1.4}通过质点的螺旋运动说明质点在极坐标系中的运动规律。通过形说明质点的运动轨迹。 {范例1.5}通过竖直上抛运动说明匀变速直线运动的规律,引入无纲量计算的方法。通过片说明匀变速直线运动中高度与时间,速度与时间,高度与速度的变化关系。 {范例1.6}说明斜抛物体的水平射程和竖直射高以及最高点的分布规律,进一步说明无纲量计算方法。通过片显示最高点分布在一个椭圆上。 {范例1.7}说明了斜抛物体在斜坡上的射程计算方法,求出了最大射程与坡度关系,详细讨论了射程与坡度的关系。通过片显示射程与射角的关系,最大射程与坡度的关系。 {范例1.8}通过平抛小球在地面上跳跃的规律说明无穷级数的应用。通过动画演示质点的运动轨迹。 {范例1.9}说明导弹拦截的计算方法。通过动画和互动演示拦截过程。 {范例1.10}利用相对运动速度的关系,求出飞机在两地的往返时间与风速和风向的公式,并做了深入讨论。在风速一定的情况下,飞机在平行风中往返的时间比在垂直风中往返时间要长,这个时间差最大。把飞机比作光,把空气想象成传播光的媒质----以太,根据光速和光在互相垂直的路程中的往返时间差,可在迈克耳逊干涉仪中用于计算条纹可能移动的数目。如果测得光在任何两个垂直方向往返的时间相等,说明以太的速度为零,即可认定以太并不存在。通过曲线族显示时间与风速和风向的关系。 质点运动方程的建立,速度和加速度的计算都是运动学的基本内容。匀变速直线运动,圆周运动和斜抛运动是三种典型的运动。无量纲化是一种十分有用的计算技巧,可避免具体条件的限制。通过片和动画,不但可以显示质点的运动规律,还能促使我们发现新的问题,再设法解决问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值