【数据分析-数据挖掘】如何成为数据分析师

如何成为python数据分析师

1:excel 数据分析

最基本的数据分析 收集 和运用 最常用的工具
熟练 然后 对付绝大部分的工作

2:SQL (structured query language)数据库语言

要会在数据库里增删存取数据,大型数据分析必备技能
效率大大的提高

sudo service mysql start 
mysql -u root

主要的语法和逻辑 类似 `

create / use / create table / insert into /
show tables /select * from / where / and-or /in- not in/ like /max-min 
/group by /order by/ count /sum /if /join /limit ..........

除此之外:

  1. SQL被作为关系型数据库管理系统的标准语言。SQL Server是由Microsoft开发和推广的关系数据库管理系统(RDBMS)

  2. MySQL是轻量型数据库,并且免费,没有服务恢复数据。

  3. Oracle是重量型数据库,收费,Oracle公司对Oracle数据库有任何服务。

  4. DB2 是美国IBM公司开发的一套关系型数据库管理系统

  5. Microsoft Office Access是由微软发布的关系数据库管理系统。它结合了 MicrosoftJet Database
    Engine 和 图形用户界面两项特点,是 Microsoft Office 的系统程序之一

3:数据可视化

数据分析是用来监控数据和观察数据

兜售自己的观点结论并且做报表给老板看

所以要学会 tableau 和 finebi

4:数理统计学

需要从基础的统计知识(描述性统计,区间估计,假设检验)出发到基本的统计知识(T检验,方差分析)最后到商业常用的模型(回归分析,方差分析),学习数据分析背后的逻辑,掌握用统计学的概念和思维去思考。

然后竟然会使用spss sas 简单操作

5:数据挖掘

数据挖掘(Data Mining)的定义是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。
数据挖掘能做以下七种不同事情:
· 分类 (Classification)
· 估计(Estimation)
· 预测(Prediction)
· 相关性分组或关联规则(Affinity grouping or association rules)
· 聚类(Clustering)
· 描述和可视化(Description and Visualization)
· 复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)

目前,以上。

92讲视频课+16大项目实战+源码+¥800元课程礼包+讲社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析的一天,让学员了解全面了解成为一个数据分析的所有必修功法,对数据分析不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页