【数据挖掘】datafountain-信用卡建模逻辑回归

本文探讨了使用逻辑回归进行数据挖掘,以解决信用卡风险评估问题。通过datafountain平台的数据集,构建逻辑回归模型,分析影响信用评分的因素,并进行模型验证和优化,以提升预测准确性。
摘要由CSDN通过智能技术生成
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')


data=pd.read_csv('/Users/chouyangyu/Downloads/cs-training.csv')
data.head(10)
data=data.iloc[:,1:]
data.columns= ['Label', 'RevolvingRatio', 'Age', '30-59D', 'DebtRatio', 'MonthlyIncome',
                'OpenL', '90D', 'RealEstate', '60-89D', 'Dependents']
data.head(10)
missdf=data.isnull().sum().sort_values(ascending=False).reset_index()
missdf.columns=['feature','miss_num']
missdf['miss_percentage']=missdf['miss_num']/data.shape[0]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值