文章目录
- 1.RDD
- 1.1 RDD简介
- 1.2 RDD核心属性
- 1.3 执行原理
- 1.4 基础编程
- 1.4.1创建RDD
- 1.4.2 RDD源数据分区
- 1.4.3 RDD算子
- 1.4.3.1 转换算子
- Value类型
- **1.map**
- **2.mapPartitions**
- **3.mapPartitionsWithIndex**
- **4.flatmap**
- **5.glom**
- **6.groupBy**
- **7.filter**
- **8.sample**
- **9.distinct**
- **10.coalesce**
- **11.sortBy**
- 双Value类型
- **12.intersection**(交集)
- **13.union**(并集)
- **14.subtract**(差集)
- **15.zip**(拉链)
- Key-Value类型
- **16.partitionBy**
- **17.reduceByKey**
- **18.groupByKey**
- **19.aggregateByKey**
- **20.foldByKey**
- **21.combineByKey**
- **22.sortByKey**
- **23.join**
- **24.leftOuterJoin**
- **25.cogroup**
- 1.4.3.2 行动算子
1.RDD
1.1 RDD简介
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是spark中最基本的数据处理模型,是最小的计算单元它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合
➢ 弹性
⚫ 存储的弹性:内存与磁盘的自动切换;
⚫ 容错的弹性:数据丢失可以自动恢复;
⚫ 计算的弹性:计算出错重试机制;
⚫ 分片的弹性:可根据需要重新分片。
➢ 分布式:数据存储在大数据集群不同节点上
➢ 数据集:RDD 封装了计算逻辑,并不保存数据
➢ 数据抽象:RDD 是一个抽象类,需要子类具体实现
➢ 不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的 RDD,在
新的 RDD 里面封装计算逻辑
➢ 可分区、并行计算
如图所示,RDD封装了处理逻辑。当时候提交时,源数据被切分中多个Task,分发到不同的Executor节点,通过RDD中封装的逻辑进行计算任务。
RDD在代码中是一个抽象类,每一个具体实现的RDD都具有不同的功能,RDD的设计使用了装饰者模式,类似于java io中的流(即我们可以把字节流FileInputStream包装成字符流,又可以把字符流包装成缓冲流)
如下图,我们可以把一个HadoopRDD包装成MapPartitionsRDD
1.2 RDD核心属性
protected def getPartitions : scala.Array[org.apache.spark.Partition]
分区列表:RDD 数据结构中存在分区列表,用于执行任务时并行计算,是实现分布式计算的重要属性
def compute(split : org.apache.spark.Partition, context : org.apache.spark.TaskContext) : scala.Iterator[T]
分区计算函数:Spark 在计算时,是使用分区函数对每一个分区进行计算
protected def getDependencies : scala.Seq[org.apache.spark.Dependency[_]] = { /* compiled code */ }
RDD 之间的依赖关系:RDD 是计算模型的封装,当需求中需要将多个计算模型进行组合时,就需要将多个 RDD 建
立依赖关系
val partitioner : scala.Option[org.apache.spark.Partitioner] = { /* compiled code */ }
分区器(可选):当数据为 KV 类型数据时,可以通过设定分区器自定义数据的分区
protected def getPreferredLocations(split : org.apache.spark.Partition) : scala.Seq[_root_.scala.Predef.String] = { /* compiled code */ }
首选位置(可选):计算数据时,可以根据计算节点的状态选择不同的节点位置进行计算
1.3 执行原理
从计算的角度来讲,数据处理过程中需要计算资源(内存 & CPU)和计算模型(逻辑)。执行时,需要将计算资源和计算模型进行协调和整合。
Spark 框架在执行时,先申请资源,然后将应用程序的数据处理逻辑分解成一个一个的计算任务。然后将任务发到已经分配资源的计算节点上, 按照指定的计算模型进行数据计算。最后得到计算结果。
RDD 是 Spark 框架中用于数据处理的核心模型,接下来我们看看,在 Yarn 环境中,RDD的工作原理:
- 启动 Yarn 集群环境
- Spark 通过申请资源创建调度节点和计算节点
- Spark 框架根据需求将计算逻辑根据分区划分成不同的任务
- 调度节点将任务根据计算节点状态发送到对应的计算节点进行计算
从以上流程可以看出 RDD 在整个流程中主要用于将逻辑进行封装,并生成 Task 发送给Executor 节点执行计算。
1.4 基础编程
1.4.1创建RDD
在 Spark 中创建 RDD 的创建方式可以分为四种:
(1) 从集合(内存)中创建 RDD
object RDDCreat {
def main(args: Array[String]): Unit = {
//准备环境
val sparkConf = new SparkConf().setMaster("local[4]").setAppName("RDD")
val sparkContext = new SparkContext(sparkConf)
//创建RDD
//从内存中创建RDD,将内存中集合的数据作为处理的数据源
val seq =Seq[Int](1,2,3,4)
//parallelize并行
//val rdd = sparkContext.parallelize(seq)
//makeRDD其实就是调用了parallelize
val rdd = sparkContext.makeRDD(seq)
//RDD本身不存储数据,只有在collect方法执行时,才执行其本身的逻辑
rdd.collect().foreach(println)
//释放环境
sparkContext.stop()
}
}
(2) 从文件中创建 RDD
val sparkConf = new SparkConf().setMaster("local[4]").setAppName("RDD")
val sparkContext = new SparkContext(sparkConf)
//从文件中构建RDD,path可以是绝对路径,相对路径,也可是目录。
//path路径还可以存在通配符*
//还是可以是HDFS文件路径
//textFile以行来读取数据
var rdd: RDD[String] = sparkContext.textFile("data")
//wholeTextFiles以文件为单位读取数据
var rdd1: RDD[(String, String)] = sparkContext.wholeTextFiles("data")
rdd.collect().foreach(println)
rdd1.collect().foreach(println)
以文件为单位读取数据的结果
1.4.2 RDD源数据分区
内存RDD
val conf: SparkConf = new SparkConf().setMaster("local[4]").setAppName("RDD")
val sparkContext = new SparkContext(conf)
//makeRDD方法的第二个参数即为分区的数量,不给定这个参数的话,默认从配置对象获取这个参数spark.default.paralleism的值,如果获取不到,则使用totalCores这个属性,就是你配置的当前环境最大可使用的cpu核心数
val rdd = sparkContext.makeRDD(List(1,2,3,4),2)
//将结果保存成文件
rdd.saveAsTextFile("output")
sparkContext.stop()
可以看到这个List被分成了2个文件
文件RDD
文件的分区模式与Hadoop是一样的
///textFile方法中第二个参数表示最小分区,如果文件数据量不能整除,那么根据Hadoop的1.1原则,当多出10%以上的数据时,会多出一个分区,否则就不会
var rdd2: RDD[String] = sparkContext.textFile("data", 2)
1.4.3 RDD算子
在RDD中,存在两类方法
- 转换:功能的补充和封装,将旧的RDD包装成新的RDD,比如flatmap,map
- 行动: 触发任务的调度和作业的执行,比如collect
这样的方法呢,就叫做算子(operator)
1.4.3.1 转换算子
RDD根据数据处理方式的不同将算子整体上分为Value类型,双value类型和key-value类型
Value类型
1.map
** 函数签名**
def mapp[U: ClassTag](f: T=>U):RDD[U]
示例
object Transform {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local").setAppName("WordCount")
val sparkContext = new SparkContext(conf)
//注意,不同分区的数据是并行计算的
var rdd: RDD[Int] = sparkContext.makeRDD(List(1, 2, 3, 4))
var rddmap: RDD[Int] = rdd.map((num) => {
num * 2
})
rddmap.collect().foreach(println)
}
}
运行结果
2.mapPartitions
函数签名
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]
函数说明
该方法和map的区别是将数据(以分区为单位)全部读取到缓存再执行计算逻辑,而不是读一个算一个
示例
val conf = new SparkConf().setMaster("local").setAppName("WordCount")
val sparkContext = new SparkContext(conf)
var rdd: RDD[Int] = sparkContext.makeRDD(List(1, 2, 3, 4))
//MapPartitions 算子需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变,
//所以可以增加或减少数据
val rddmapPartitions = rdd.mapPartitions((iter=>{iter.map(_+1)}))
rddmapPartitions.collect().foreach(println)
当内存小,数据多时,可能会造成oom
3.mapPartitionsWithIndex
故名思意,这个算子可以获取分区的索引
函数签名
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]
示例:如果是第一个分区,返回数据的迭代器,如果不是,返回一个空列表的迭代器
val conf = new SparkConf().setMaster("local").setAppName("WordCount")
val sparkContext = new SparkContext(conf)
var rdd: RDD[Int] = sparkContext.makeRDD(List(1, 2, 3, 4),2)
rdd.mapPartitionsWithIndex((index,iter)=>{
if(index==1)
iter
else Nil.iterator
})
4.flatmap
函数签名
def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]
函数说明
将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射
示例:拆分一个句子的所有单词
val conf = new SparkConf().setMaster("local").setAppName("WordCount")
val sparkContext = new SparkContext(conf)
val rdd = sparkContext.makeRDD(List("hello scala spark"))
val rddflatmap = rdd.flatMap(list => list.split(" "))
rddflatmap.foreach(println)
示例:将 List(List(1,2),3,List(4,5))进行扁平化操作
当元素类型不确定时候,可以使用scala中的模式匹配
var rdd: RDD[Any] = sparkContext.makeRDD(List(List(1, 2), 3, List(4, 5)))
var rddfaltmap: RDD[Int] = rdd.flatMap((data => {
data match {
case list: List[Int] => list
case dat: Int => List(dat)
}
}))
rddfaltmap.foreach(println)
5.glom
函数签名
def glom(): RDD[Array[T]]
说明:将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变
6.groupBy
函数签名
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]
函数说明
将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样
的操作称之为 shuffle。极限情况下,数据可能被分在同一个分区中
一个组的数据在一个分区中,但是并不是说一个分区中只有一个组
示例:将奇偶数放在不同的分区
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.makeRDD(List(1,2,3,4),2)
//指定分区的key
val rddGroup = rdd.groupBy((num)=>num%2)
rddGroup.collect().foreach(println)
这个例子中,不同分区的数据被重新组合了
7.filter
** 函数签名**
def filter(f: T => Boolean): RDD[T]
** 函数说明**
将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。
当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜
8.sample
函数签名
def sample(
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T]
函数说明
根据指定的规则从数据集中抽取数据
- 抽取数据不放回(伯努利算法)
伯努利算法:又叫 0、1 分布。例如扔硬币,要么正面,要么反面。
具体实现:根据种子和随机算法算出一个数和第二个参数设置几率比较,小于第二个参数要,大于不
要
第一个参数:抽取的数据是否放回,false:不放回
第二个参数:抽取的几率,范围在[0,1]之间,0:全不取;1:全取;
第三个参数:随机数种子 - 抽取数据放回(泊松算法)
第一个参数:抽取的数据是否放回,true:放回;false:不放回
第二个参数:重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数
第三个参数:随机数种子
9.distinct
函数签名
def distinct()(implicit ord: Ordering[T] = null): RDD[T]
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
** 函数说明**
将数据集中重复的数据去重
10.coalesce
函数签名
def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]
函数说明
根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本
def coalesce(numPartitions: Int, //新的分区个数
shuffle: Boolean = false,//是否shuffle,即打乱重新分区。默认为否,这样可能导致数据倾斜
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]
** 补充**
怎样扩大分区
当coalesce的分区数大于原分区数,再指定shuffle操作为true,就可以实现扩大分区个数的效果了
spark将这个操作又重新封装成了repartition方法。我们可以直接调用repatition实现扩大分区
11.sortBy
函数签名
def sortBy[K](
f: (T) => K,
ascending: Boolean = true,//升序,false为降序
numPartitions: Int = this.partitions.length)
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
** 函数说明**
该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程
双Value类型
12.intersection(交集)
** 函数签名**
def intersection(other: RDD[T]): RDD[T]
** 函数说明**
对源 RDD 和参数 RDD 求交集后返回一个新的 RDD
示例:
val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.intersection(dataRDD2)
13.union(并集)
函数签名
def union(other: RDD[T]): RDD[T]
函数说明
对源 RDD 和参数 RDD 求并集后返回一个新的 RDD
14.subtract(差集)
函数签名
def subtract(other: RDD[T]): RDD[T]
函数说明
以一个 RDD 元素为主,去除两个 RDD 中重复元素,将其他元素保留下来。
15.zip(拉链)
函数签名
def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)]
函数说明
将两个 RDD 中的元素,以键值对的形式进行合并。其中,键值对中的 Key 为第 1 个 RDD中的元素,Value 为第 2 个 RDD 中的相同位置的元素
补充
不可以将分区数量不一致或者分区中元素数量不一致的RDD进行zip
Key-Value类型
16.partitionBy
函数签名
def partitionBy(partitioner: Partitioner): RDD[(K, V)]
函数说明
将数据按照指定 Partitioner 重新进行分区。Spark 默认的分区器是 HashPartitioner
示例
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1,"aaa"),(2,"bbb"),(3,"ccc")),3)
//partitionBy是PairRDDFunctions类的方法,这里用到了隐式转换
//当第一次编码类型不通过是,scala会尝试在上下文寻找隐士函数转换类型
rdd.partitionBy(new HashPartitioner(2)).saveAsTextFile("output")
17.reduceByKey
函数签名
def reduceByKey(func: (V, V) => V): RDD[(K, V)]
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]
函数说明
可以将数据按照相同的 Key 对 Value 进行两两聚合
reduceBykey要求分区内和分区间不独立,因为在shuffle阶段前会在分区内进行相同的key之间的聚合
示例
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.makeRDD(List(("a",1),("a",2),("a",3),("b",4)))
//函数参数是两个value
rdd.reduceByKey((x,y)=>x+y).collect().foreach(println)
18.groupByKey
函数签名
def groupByKey(): RDD[(K, Iterable[V])]
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]
函数说明
将数据源的数据根据 key 对 value 进行分组
与groupBy的区别是:groupByKey的分区key是指定的,value会独立出来,groupBy的分区key是指定的,会把整理进行分组
19.aggregateByKey
函数签名
def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]
函数说明
将数据根据不同的规则进行分区内聚合和分区间聚合
//第一个参数列表需要转递一个参数,表示为初始值
//主要用于碰见第一个key的时候和value进行分区计算
//注意返回的数据类型是初始值类型
def aggregateByKey[U: ClassTag](zeroValue: U)
//第二个参数列表转递两个函数
//第一个函数表示分区内聚合规则
(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]
示列:求不同key的value平均数
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[*]").setAppName("test")
val sc = new SparkContext(conf)
val rdd = sc.makeRDD(List(("a", 4), ("a", 5), ("a", 3),
("b", 4), ("b", 6), ("b", 20)))
//初始值元组(key个数,value总和)
var rddAggregateBykey: RDD[(String, (Int, Int))] = rdd.aggregateByKey((0, 0))((t, v) => {
(t._1 + 1, t._2 + v)
}, (u1, u2) => {
(u1._1 + u2._1, u1._2 + u2._2)
})
rddAggregateBykey.map((t)=>(t._1,t._2._2/t._2._1)).collect().foreach(println)
}
20.foldByKey
函数签名
def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]
函数说明
当分区内计算规则和分区间计算规则相同时,aggregateByKey 就可以简化为 foldByKey
21.combineByKey
** 函数签名**
def combineByKey[C](
createCombiner: V => C,
mergeValue: (C, V) => C,
mergeCombiners: (C, C) => C): RDD[(K, C)]
函数说明
最通用的对 key-value 型 rdd 进行聚集操作的聚集函数(aggregation function)。类似于aggregate(),combineByKey()允许用户返回值的类型与输入不一致。
与aggregateByKey的区别在于,combineByKey第一个参数是一个函数,作用是让第一个数据转换成我们需要的数据结构
思考一个问题:reduceByKey、foldByKey、aggregateByKey、combineByKey 的区别?
- reduceByKey: 相同 key 的第一个数据不进行任何计算,分区内和分区间计算规则相同
- FoldByKey: 相同 key 的第一个数据和初始值进行分区内计算,分区内和分区间计算规则相同
- AggregateByKey:相同 key 的第一个数据和初始值进行分区内计算,分区内和分区间计算规则可以不相
- CombineByKey:当计算时,发现数据结构不满足要求时,可以让第一个数据转换结构。分区内和分区间计算规则不相同。
这四个算子都调用了combineByKeyWithClassTag方法
22.sortByKey
函数签名
def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)
: RDD[(K, V)]
函数说明
在一个(K,V)的 RDD 上调用,K 必须实现 Ordered 接口(特质),返回一个按照 key 进行排序的RDD
23.join
函数签名
def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]
函数说明
在类型为(K,V)和(K,W)的 RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的(K,(V,W))的 RDD
如果不存在相同key,那么这个key就会被丢掉
如果相同的key很多,便会依次匹配,出现笛卡尔积,数据量大幅增长
24.leftOuterJoin
函数签名
def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]
函数说明
类似于 SQL 语句的左外连接
补充:右连接就是rightOuterJoin
25.cogroup
函数签名
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]
函数说明
在类型为(K,V)和(K,W)的 RDD 上调用,返回一个(K,(Iterable,Iterable))类型的 RDD
1.4.3.2 行动算子
所谓行动算子,其实就是触发作业(job)执行的方法
底层代码调用的是环境对象的runjob方法
reduce
函数签名
def reduce(f: (T, T) => T): T
函数说明
聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据
collect
函数签名
def collect(): Array[T]
函数说明
以数组 Array 的形式返回数据集的所有元素到driver端内存中
count
函数签名
def count(): Long
函数说明
返回 RDD 中元素的个数
first
函数签名
def first(): T
函数说明
返回 RDD 中的第一个元素
take
函数签名
def take(num: Int): Array[T]
函数说明
返回一个由 RDD 的前 n 个元素组成的数组
takeOrdered
函数签名
def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]
函数说明
返回该 RDD 排序后的前 n 个元素组成的数组
aggregate
函数签名
def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U
函数说明
分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合
fold
函数签名
def fold(zeroValue: T)(op: (T, T) => T): T
函数说明
折叠操作,aggregate 的简化版操作
countByKey
函数签名
def countByKey(): Map[K, Long]
函数说明
统计每种 key 的个数
save 相关算子
函数签名
def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
//下面这个方法要求数据类型必须是键值类型
def saveAsSequenceFile(
path: String,
codec: Option[Class[_ <: CompressionCodec]] = None): Unit
函数说明
将数据保存到不同格式的文件中
foreach
函数签名
def foreach(f: T => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))}
函数说明
分布式遍历 RDD 中的每一个元素,调用指定函数
这是在executor端执行的