智慧农业物联网应用案例介绍

近几年来由于微电子和计算机技术不断进步,使感测技术更加提升与多样,让农业物联网传感器的种类与数量快速增长。此外,随着宽带与行动网络的演进与普及,让网络连结无所不在。近年物联网与云端计算大数据更加深度融合。云端计算能够帮助智慧农业实现信息存储资源和计算能力的分散式共享,大数据的信息处理能力支持海量信息处理和利用,亦可提供农业生产的验证(如:食安云、区块链)。物联网智慧化发展使智慧农业的应用更加广泛。农业物联网系统将能依据环境变化和系统运行的需求自动调整,提供智慧化环境感知服务。

农业物联网发展方向有三:一、提高农业生产的质量;二、节约资源;三、。朝向可持续化发展。物联网与农业结合的亮点之一是透过过数据分析来改善农业决策。利用云端系统、营运自动化,以及实时监控和数据分析可提升农业生产的质量与产量。在降低农业生产成本方面,以节约灌溉用水为例。智慧农业物联网可结合历史数据分析与实时检测数据,来提供更准确的模型和优化方案。农民在意的是采用智慧农业的结果,在产品的生命周期内,智慧农业物联网厂商需要通过不断地改善功能来提高附加价值,给农民带来真正的收益。

图一、智慧农业物联网架构范例

图一是智慧农业物联网的范例架构。由左至右分成三大部份,最左边是农业传感器,通常会将数个传感器连线至一个集线箱(称为「物联网集线器」)中(a)、(c)。由于农地不一定有电源,因此会加装太阳能板(b)。传感器集线器透过中间的网络连线至云端服务器。若是在设施内,可以采用有线网络,如:乙太网络(Ethernet);在室外则会采用无线网络,如:无线区域网络(Wireless LAN,WLAN)。最右边的云端服务器则包含数据库(e)储存资料、网页服务器提供界面、AI服务器(f)提供运算能力。使用者(g)可透过网际网络连线,透过手持装置观看农场信息并控制相关设备。

物联网应用于农业上需要注意的议题:一、针对农民需求提出解决方案;二、传感器的准确性与耐用度;三、传感器摆放位置与数量;四、需考虑防水、防虫,也需自动侦测错误:五、传感器与集线器之供电与散热;六、网络资料传输之可靠度与存取协定界面。

​​​​​​​ 

图二、传感器应用范例

图二是一个侦测风向与风速对授粉及植物生长的影响的范例。风向与风速传感器(a)可以实时测得风向与风速。透过光量传感器(b)得知光子的数量,及温湿度(c)与土壤湿度与EC传感器(g)可以观测光合作用的重要指标。在农地中也要注意防水(d)与防虫(h)。

物联网的网络技术可以分为有线与无线连结。设施内建议采用有线连结,有线网络传输比较稳定且频宽也比较大。一般常用的有线网络采用乙太网络(Ethernet)。乙太网络可以供电(Power over Ethernet,简称PoE)。无线网络以距离分为短距离无线区域网络(Wireless Local Area Network,简称WLAN)、蓝芽、Zigbee。其中无线区域网络频宽较大可以提供50Mbps~1500Mbps的速度,支援高画质的视讯传输。蓝芽与Zigbee则是低功耗,可以提供少量的数据传输。然而在中、长距离的应用情境,目前物联网产业链关注于低功耗广域网路(Low-Power Wide-Area Net-work,简称LPWAN),其通讯技术有NB-IoT (Narrow Band-Internet of Things)、LoRa (LongRange) 及SigFox等。在这些低功耗广域网路技术中,可以分为运行在「不需特许频段(Unlicensed Band)」以及「需特许频段(Licensed Band)」两类。需要特许频段的有eMTC与NB-IoT,不需特许频段的LoRa与SigFox。这四个系统的特性如下:

  • eMTC:为了适应物联网环境下巨量的设备连接,3GPP (3rd Generation Partnership Project)一方面保留了原有LTE (Long Term Evolution)协议对硬件环境的兼容性,另一方面针对物联网的特殊应用删除了高速传输等一些不必要的能力,最后在LTE的基础上建立了eMTC。eMTC每个载波最多可以支援10万个装置连线,还支援上下行最大1Mbps的峰值速率,在5Wh的电量下待机超过10年。
  • NB-IoT: NB-IoT通过降低编位元速率大幅提高了系统的解调效率,而且降低了单一装置的讯号发射功率,每个载波最多可以支援20万个网络连线。此外, NB-IoT还可以通过增加更多载波的方式来扩大系统承载规模,具备利用单一基站一次性支援数百万个物联网连线的能力。
  • LoRa:LoRa使用免许可的Sub-GHz无线电频段,能够以低功耗实现超远距离传输。LoRa技术分为LoRa物理层和LoRaWAN(长距离广域网路)上层两部分。LoRa 可允许六种展频因子 (SF7~SF12) 和三种不同的频宽 (125 kHz、250 kHz、500 kHz)。可允许的展频因子和频宽由所在区域的主管机关决定。
  • SigFox:SigFox成立于2009年,目的是建立连接电表等低功耗装置的无线网络。这些装置需要持续发送少量数据。SigFox使用工业、科学和医疗(Industrial, Scientific and Medical,ISM)无线电频段进行通信,每天最多支持140个上传讯息,每个讯息可以承载12个字符组(Bytes),数据速率达100 Bytes per second (Bps)。

乙太网络与无线区域网络常用于传输高画质的影像或照片,eMTC可提供移动性与1Mbps的频宽。NB-IoT、LoRa及SigFox则是用于传输传感器数据。

以下说明智慧农业物联网的应用案例,希望能够让读者了解结合物联网的功能,并进一步将资通讯技术带入更多农业场域。图三是在宜兰葱满理想农场中建置的破风网案例。原本破风网(方框)是靠人工手动收放,加入物联网的风向与风速的传感器之后,可以设定风速高于一定数值自动放下破风网,如此一来可以更实时且节省人力。

图三、破风网(防风网)收放案例

图四是大学植物工厂的案例。透过传感器可以侦测温湿度与二氧化碳,并控制冷气与养液。为了避免网络断线造成影响,有部份控制策略是放在PLC控制器中,透过RS-485界面连至微控制器,再将数据资料透过LoRa或NB-IoT送至云端。

图四、植物工厂案例

图五是仔猪受压迫警示系统的架构图。仔猪在出生时很容易因为受母猪压迫窒息而死。仔猪受压迫时会发出尖叫声,农民需要实时前往将仔猪救起。在此系统中利用物联网收集仔猪在分娩舍中的声音与影像,透过AI训练后可判断仔猪受压迫的尖叫声。若发生尖叫声,系统会发出警报或LINE讯息通知猪农。

图五、仔猪受压迫警示系统架构图

图六是国立宜兰大学设计的猪只自动称重与喂食系统。当猪只站上秤台后系统开始运作。透过猪只身上的耳标(RFID),系统可以判定是那一头猪、纪录猪只重量,并自动判断是否需要给饲料。

图六、猪只秤重与自动喂食案例

图七是低温谷仓中公粮监测的案例。一般谷物是从(1)进入谷仓、从(2)出料。透过既有的温度感测线(3)与(4)可以得知谷仓内的温度。若温度过高,则会从(5)将冷气吹入。因为温度传感器被谷物压到时温度变化不大(7);而没有谷物时,温度会随室外气温变化(6)。国立宜兰大学团队藉此设计系统,协助估测并监控公粮的储存量。

图七、低温谷仓之公粮监测

智慧农业需要跨领域团队整合,依据农民的需求并利用资通讯技术提供解决方案。虽然技术研发上具有挑战性,但结合资通讯技术可提升产业价值并解决农业问题。本文介绍智慧农业物联网的概念,也透过案例提供智慧农业的发展方向与示范。希望能够让读者了解物联网的功能,并进一步将资通讯技术扩散至更多农业场域。

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

地理探险家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值