锐化滤波器

锐化滤波器通过增强高频分量凸显图像边缘,常采用高通滤波器。Sobel算子作为线性锐化滤波器的一种,利用像素邻域灰度差分实现边缘检测,对垂直和水平边缘尤为敏感。
摘要由CSDN通过智能技术生成

       锐化滤波器在去噪的同时凸显物体的边缘信息,保持图像边缘信息不变或者是增强边缘信息。图像锐化的实质上增强原图像的高频分量,图像锐化滤波器为高通滤波器,边缘和轮廓一般位于灰度突变的地方,因此可以使用灰度差分提取图像边缘和轮廓。

      由于轮廓和边缘在一幅图中常常具有任意方向,而差分运算具有方向性,如果差分运算的方向选取不合适,则和差分方向不一致的边缘和轮廓就检测不出来。图像锐化处理对任意方向的边缘和轮廓都有检测能力。

线性锐化滤波器

线性高通滤波器是最常用的线性锐化滤波器。其中心系数为正数,其他系数为负数,所有的系数之和为0.

clc,clear,close all;    %清理命令区、清理工作区、关闭显示图形
warning off             %消除警告
feature jit off         %加速代码运行
im=imread('ColoredChips.png');  %原图像
% im=rgb2gray(im);   %二维灰度图
R=imnoise(im(:,:,1),'gaussian',0,0.01)  %R+白噪声
G=imnoise(im(:,:,2),'gaussian',0,0.01)  %G+白噪声
B=imnoise(im(:,:,3),'gaussian',0,0.01)  %B+白噪声
im=cat(3,R,G,B);   %原图像+白噪声
w=[-1 -1 -1;   %掩膜mask
    -1 8 -1;
    -1 -1 -1];
im1=linear_sharpen_filter(im,w);
figure('color',[1,1,1])
subplot(121),imshow(im,[]),title('原始图像')
subplot(122),imshow(im1,[]),titl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值