TPH-YOLOv5: 基于Transformer预测头的改进YOLOv5用于无人机捕获场景目标检测

        代码链接:GitHub - cv516Buaa/tph-yolov5

        如果进入不了github,就在这里下载,没有权重(免费的): https://download.csdn.net/download/weixin_44911037/86823848

        这是一篇针对无人机小目标算法比赛后写的论文,无人机捕获场景下的目标检测是近年来的热门课题。由于无人机总是在不同的高度上飞行,目标尺度变化剧烈,给网络优化带来了负担。此外,高速和低空飞行会使密集的物体产生运动模糊,这对目标识别带来了很大的挑战,如下图所示是无人机拍摄的场景,我们可以看出无人机拍摄的图片尺度变化确实非常大。

        

        在VisDrone2021测试挑战数据集上,提出的TPH-YOLOv5达到39.18% (AP),比DPNetV3(之前的SOTA方法)高出1.81%。在VisDrone2021 DET挑战赛中,TPH-YOLOv5获得第5名,与第一名相比差距不大。

        这篇文章所做的贡献在于:1、增加了一个检测头,用于更好地检测小目标,这是很多学者解决小目标的基本操作,但是这种操作会给模型行整体增加计算量。2、利用Transformer来更改原来yolov5的检测头,个人认为这部分是这篇比赛论文比较大的创新点,算是把Transformer和CNN结合起来。3、引入CBAM注意力机制模块,这部分算是一个比较常规的操作,毕竟注意力机制在目标检测中的作用还是比较大的,当然要放在合适的地方。4、提供了一些有用的策略,比如说数据增强,例如数据增强,多尺度测试(这种方法在第一定程度会增加最终的mAP)、使用了额外的分类器。5.使用了自训练分类器来提高对一些混淆类别的分类能力(这是针对相似车但是属于不同的类)。

 在这篇文章中,对于最后预测后处理使用集成的方式,我们可以从图中可以看出,他使用WBF和NMS的集成方式,对于WBF我在下图给出解释,相当于另外生成一种加权后的预测框,想了解更深可以看论文:https://arxiv.org/abs/1910.13302,当然具体怎么集成的还是需要看代码才能准确知道,后面有时间再看。

        至于网络模型的具体结构,如上图所示,在特征增强(NECK)中使用了Transfromer 的结构,因为transformer能够获得更大的感受。其实在一部分我还是比较困惑的,就是将3维的特征变成二维再转变成3维的不嫌麻烦吗?又或者这里面的结构数据会不会发生某种变化,当然这是我一直困惑的事情,我后面好好看看代码,看看它的模型结构。具体代码就是下面的。将特征层转成向量再转成特征层。

class TransformerBlock(nn.Module):
    # Vision Transformer https://arxiv.org/abs/2010.11929
    def __init__(self, c1, c2, num_heads, num_layers):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)
        self.linear = nn.Linear(c2, c2)  # learnable position embedding
        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
        self.c2 = c2

    def forward(self, x):
        if self.conv is not None:
            x = self.conv(x)
        b, _, w, h = x.shape
        p = x.flatten(2).unsqueeze(0).transpose(0, 3).squeeze(3)
        return self.tr(p + self.linear(p)).unsqueeze(3).transpose(0, 3).reshape(b, self.c2, w, h)

         下面是就是一般的Transformer的编码结构。

        总体来说,这篇文章给我的一些参考意见就是使用Transformer来对小目标检测。

class TransformerLayer(nn.Module):
    def __init__(self, c, num_heads):
        super().__init__()
 
        self.ln1 = nn.LayerNorm(c)
        self.q = nn.Linear(c, c, bias=False)
        self.k = nn.Linear(c, c, bias=False)
        self.v = nn.Linear(c, c, bias=False)
        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
        self.ln2 = nn.LayerNorm(c)
        self.fc1 = nn.Linear(c, 4*c, bias=False)
        self.fc2 = nn.Linear(4*c, c, bias=False)
        self.dropout = nn.Dropout(0.1)
        self.act = nn.ReLU(True)
 
    def forward(self, x):
        x_ = self.ln1(x)
        x = self.dropout(self.ma(self.q(x_), self.k(x_), self.v(x_))[0]) + x
        x_ = self.ln2(x)
        x_ = self.fc2(self.dropout(self.act(self.fc1(x_))))
        x = x + self.dropout(x_)
        return x

  • 3
    点赞
  • 81
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: tph-yolov5是一种基于Transformer预测改进yolov5用于无人机捕捉场景中进行目标检测。它采用了Transformer网络结构,能够更好地处理长序列数据,提高了检测精度和速度。在无人机应用中,tph-yolov5可以更好地适应复杂的场景和光照条件,提高了无人机的自主飞行和目标跟踪能力。 ### 回答2: tph-yolov5是一种改进版的yolov5目标检测算法,主要应用于无人机场景下的目标检测。与传统的yolov5相比,tph-yolov5采用了transformer prediction head技术来进一步提高检测的准确率和效率。 无人机场景下的目标检测任务比较特殊,因为无人机拍摄的图像往往具有良好的视角和高度,但是环境复杂多变且目标出现频率较低,因此传统的目标检测算法可能会遇到一些困难,例如漏检、错检等问题。而tph-yolov5算法在transformer prediction head帮助下,能够更好地解决这些问题。 具体来说,tph-yolov5算法的优势在于如下三个方面: 1. Transformer Prediction Head技术 tph-yolov5采用transformer prediction head技术来生成目标检测预测结果。相比传统的卷积神经网络,transformer prediction head能够更好地捕捉物体之间的关系,并且在计算量相同的情况下,能够获得更高的准确率。 2. 自适应感受野 在tph-yolov5算法中,网络会根据目标的大小和位置自适应地调整感受野的大小,这样可以更好地捕捉目标的细节,提高检测的准确率。 3. 融合多尺度特征 tph-yolov5算法融合了多尺度特征,这样可以更好地处理远距离目标和近距离目标的检测。在无人机场景下的目标检测任务中,这一点尤其重要,因为有些目标可能会比较小或者比较远。 总之,tph-yolov5是一种非常优秀的目标检测算法,它在无人机场景下的目标检测任务中表现很出色。由于采用了transformer prediction head技术等优秀的方法,它能够更准确地捕捉目标,同时也能够更快地处理大量的数据。由于无人机技术的快速发展,相信tph-yolov5算法将在未来得到更广泛的应用。 ### 回答3: tph-yolov5是一种改进的基于transformer预测yolov5用于无人机捕获场景中进行物体检测无人机拍摄的场景与传统的场景有很大不同,比如拍摄的视角更高,场景更广阔,物体更稀疏。这些因素导致传统的物体检测模型难以在无人机场景中准确地检测物体。因此,tph-yolov5的提出是为了解决这些问题。 tph-yolov5使用了transformer预测改进yolov5模型的表现。具体来说,transformer模型用于生成特征图中的位置嵌入,以在后续的特征映射中对不同位置的特定位置进行建模。这种方法可以更准确地定位每个目标的位置,特别是在稀疏目标场景中。此外,tph-yolov5还使用了引入MSELoss和IoULoss的CAP L1损失以增强模型的稳定性和准确性。 tph-yolov5的实验结果表明,在无人机拍摄的场景中,tph-yolov5相比于基准模型yolov5和其他物体检测模型,具有更高的准确性和稳定性。这些结果证明了transformer预测的优越性以及CAP L1损失对模型表现的关键作用,这为无人机场景中物体检测的发展提供了新的思路和方法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值