基于深度学习的手写汉字识别系统(含PyQt+代码+训练数据集)

本文介绍了如何基于深度学习的CNN网络构建手写汉字识别系统,包括数据集的准备、预处理、模型构建、训练与测试,以及使用PyQt实现的用户界面。提供了训练数据集和详细代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本项目是基于深度学习网络模型的人脸表情识别系统,核心采用CNN卷积神经网络搭建,详述了数据集处理、模型构建、训练代码、以及基于PyQt5的应用界面设计。在应用中可以支持手写汉字图像的识别。本文附带了完整的应用界面设计、深度学习模型代码和训练数据集的下载链接。

完整资源下载链接:博主在面包多网站上的完整资源下载页

项目演示视频:

【项目分享】基于深度学习的手写汉字识别系统(含PyQt+代码+训练数据集)

一、数据集

1.1 数据集介绍

本项目的数据集在下载后的data文件夹下,主要分为训练数据集train和测试数据集test,如下图所示。
在这里插入图片描述

以训练集为例,如下图所示。其中训练集包含零、一、计、算、机等20个中文手写汉字,图像共计4757张。可以自己添加相应的手写汉字,可获取的 手写中文数据集链接。
在这里插入图片描述

1.2 数据预处理

首先,加载数据集中的图像文件,并将它们调整为相同的大小(64x64)。然后,根据文件所在的目录结构,为每个图像文件分配一个标签(label),标签是根据文件所在的子目录来确定的。最后,使用 train_test_split 函数将数据集划分为训练集和验证集,以便后续模型训练和评估。

def load_data(filepath):
    # 遍历filepath下所有文件,包括子目录
    files = os.listdir(filepath)
    for fi in files:
        fi_d = os.path.join(filepath, fi+'/')
        if os.path.isdir(fi_d):
            global label
            load_data(fi_d)
            label += 1
        else:
            labels.append(label)
            img = mi.imread(fi_d[:-1])
            img2 = cv2.resize(img, (64, 64))
            dataset.append(img2)

    # 在训练集中取一部分作为验证集
    train_image, val_image, train_label, val_label = train_test_split(
        np.array(dataset), np.array(labels), random_state=7)

    return train_image, val_image, train_label, val_label

二、模型搭建

CNN(卷积神经网络)主要包括卷积层、池化层和全连接层。输入数据经过多个卷积层和池化层提取图片信息后,最后经过若干个全连接层获得最终的输出。CNN的实现主要包括以下步骤:数据加载与预处理、模型搭建、定义损失函数和优化器、模型训练、模型测试。想了解更多关于CNN卷积神经网络的请自行百度。本项目基于tensorflow实现的,并搭建如下图所示的CNN网络模型。
请添加图片描述
具体代码:

def get_model():

    k.clear_session()

    # 创建一个新模型
    model = Sequential()

    model.add(Conv2D(32, 3, padding='same', activation='relu', input_shape=(64, 64, 3)))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(64, 3, padding='same', activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Conv2D(128, 3, padding='same', activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))

    model.add(Flatten())
    model.add(Dropout(0.2))
    model.add(Dense(512, activation=
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值