如何训练 yolov8——手写汉字识别数据集,HWDB,OLHWDB数据集

在这里插入图片描述
在这里插入图片描述
如何使用YOLOv8进行手写汉字识别,并提供详细的训练代码和数据集准备步骤。我们将使用两个常用的手写汉字识别数据集:HWDB(Handwritten Chinese Character Database)和OLHWDB(Online Handwritten Chinese Character Database)。

项目结构
深色版本
handwriting_recognition/
├── dataset/
│ ├── hwdb/
│ │ ├── images/
│ │ │ ├── train/
│ │ │ ├── val/
│ │ │ └── test/
│ │ ├── labels/
│ │ │ ├── train/
│ │ │ ├── val/
│ │ │ └── test/
│ ├── olhwdb/
│ │ ├── images/
│ │ │ ├── train/
│ │ │ ├── val/
│ │ │ └── test/
│ │ ├── labels/
│ │ │ ├── train/
│ │ │ ├── val/
│ │ │ └── test/
├── weights/
│ └── best.pt
├── src/
│ ├── train.py
│ ├── predict.py
│ ├── utils.py
│ ├── ui/
│ │ └── main_window.ui
├── requirements.txt
└── README.md

  1. 安装依赖
    首先,确保你已经安装了必要的库。创建一个requirements.txt文件,内容如下:

深色版本
opencv-python
numpy
pillow
PyQt5
ultralytics
然后,使用以下命令安装依赖:

bash
深色版本
pip install -r requirements.txt
2. 数据集准备
确保你的数据集已经按照以下结构组织:

深色版本
dataset/
├── hwdb/
│ ├── images/
│ │ ├── train/
│ │ ├── val/
│ │ └── test/
│ ├── labels/
│ │ ├── train/
│ │ ├── val/
│ │ └── test/
├── olhwdb/
│ ├── images/
│ │ ├── train/
│ │ ├── val/
│ │ └── test/
│ ├── labels/
│ │ ├── train/
│ │ ├── val/
│ │ └── test/
每个文件夹中包含对应的图像文件和标签文件。确保所有图像文件都是.jpg格式,而标签文件是.txt格式(YOLO格式),并且它们的名字与对应的图像文件相同。

  1. 数据集配置文件
    创建一个数据集配置文件(如handwriting_dataset.yaml),该文件定义了数据集的基本信息,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值