一个好奇的小孩有N块砖,他要用这N块砖建造不同的楼梯。楼梯各个台阶的砖块数不同,但必须严格地递减。每个楼梯至少包含两个台阶,并且每个台阶至少包含一块砖。下图是5块砖的楼梯。
输入样例:
输入砖块数N:5
样例输出:
一共有2种不同的建构方法
分析:可以看成一种整数划分情况 例如 5分为4+1,3+2两种情况
划分条件:
1.后面的数小于前面的数 底砖要大于上面的砖
利用动态规划的方法解决问题
动态转移方程 f(m,n)表示由n块砖组成楼梯,最后一行楼梯砖不超过m的方案总数 f(m,n)=f(m-1,n-m)+f(m-1,n)
边界: f(0,0)=1
建表结果:
answer:
#include<iostream>
using namespace std;
int main()
{
int n;
cout<<"输入砖块数N:";
cin>>n;
n=n+1;
int f[n][n];
f[0][0]=1;
for(int i=0;i<n;i++)
{
for(int j=1;j<=i;j++)
{
f[i][0]=0;
//i块砖最后一行楼梯砖不超过j的方案书数
f[i][j]=f[i][j-1]+f[i-j][j-1];
}
for(int j=i+1;j<n;j++)
{
f[i][j]=f[i][i];
}
}
printf("一共有%d种不同的构建方法",f[n-1][n-1]-1);
return 0;
}