动态规划:建造楼梯

一个好奇的小孩有N块砖,他要用这N块砖建造不同的楼梯。楼梯各个台阶的砖块数不同,但必须严格地递减。每个楼梯至少包含两个台阶,并且每个台阶至少包含一块砖。下图是5块砖的楼梯。
输入样例:
输入砖块数N:5
样例输出:
一共有2种不同的建构方法
在这里插入图片描述
分析:可以看成一种整数划分情况 例如 5分为4+1,3+2两种情况
划分条件:
1.后面的数小于前面的数 底砖要大于上面的砖

利用动态规划的方法解决问题
动态转移方程 f(m,n)表示由n块砖组成楼梯,最后一行楼梯砖不超过m的方案总数 f(m,n)=f(m-1,n-m)+f(m-1,n)
边界: f(0,0)=1
建表结果:
建表结果

answer:

#include<iostream>

using namespace std;


int main()
{
	int n;
	cout<<"输入砖块数N:";
	cin>>n;
	n=n+1;
	int f[n][n];
	f[0][0]=1;
	for(int i=0;i<n;i++)
	{
		
		for(int j=1;j<=i;j++)
		{
			f[i][0]=0;
			
			//i块砖最后一行楼梯砖不超过j的方案书数 
			f[i][j]=f[i][j-1]+f[i-j][j-1]; 
		}
		for(int j=i+1;j<n;j++)
		{
			f[i][j]=f[i][i];
		}
	}
	printf("一共有%d种不同的构建方法",f[n-1][n-1]-1);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值