第5周学习:ShuffleNet & EfficientNet & 迁移学习

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一、ShuffleNet V1

   连续的 group 卷积会产生边界效应,即某个输出channel仅仅来自输入channel的一小部分。这样学出来的特征会非常局限。于是就有了channel shuffle来解决这个问题如图 b 所示,在第二个 group 之前,将一个组内分成不同的子组,然后让子组分别与各组进行卷积。或者像图 c 所示,在进入第二个 group 卷积之前先对目前的组进行重组,即channel shuffle。这样每次组卷积对应的channel就不再局限了。
在这里插入图片描述
   ShuffleNet的核心就是用 PointWise Group Convolution,Channel Shuffle和DepthWise Separable Convolution代替ResNet block的相应层构成了ShuffleNet uint,达到了减少计算量和提高准确率的目的。channel shuffle解决了多个group convolution叠加出现的边界效应,PointWise Group Convolution和Depthwise Separable Convolution主要减少了计算量。
在这里插入图片描述
ShuffleNet结构:
在这里插入图片描述

二、ShuffleNet V2

ShuffleNet v2进行了四项实验,得出了一些比较耗时的操作,经过原理分析,提出了四条设计原则。

  1. 卷积层输入输出通道数相同时,MAC最小

  2. 分组卷积的分组数越大,MAC越大

  3. 网络支路会降低模型的并行度

  4. Element-wise操作不可忽视

结构:
在这里插入图片描述
   图a为shuffleNet v1正常Unit, 图b为shuffleNet v1降采样Unit,图c为shuffleNet v2 正常Unit, 图d为shuffleNet v2 降采样Unit.
   在shuffleNet v2中引入了Channel Split, 将通道数分为c’ 和c - c’,这里c’取c/2。一部分进行卷积操作,另一部分直接进行concat。卷积的那一路的输入和输出相等,这是考虑到第一条原则。两个1x1卷积不再进行分组,一部分原因是第二条原则,另一部分是因为Channel split就相当于是分组了。两路进行concat后,再进行Channel Shuffle,这是为了通道上的信息进行流动。否则,左端那路的一半通道信息将一直进行到后面都没有通过卷积层。
   对于空间降采样层,这个Unit是没有Channel split,这样可以实现在两路concat后,通道数翻倍。其余改动具体看图更容易理解。

网络结构:
在这里插入图片描述
   结构跟shuffleNet v1基本一致,唯一的差别是在全局平均池化前加入了1x1卷积,以便混合特征。右边的output channels下的0.5x, 1x等,只是用来表示不同的模型尺寸,也就是通道数不一样。

三、EfficientNet

卷积神经网络精度提升的经验:
1、网络深度的增加,典型的如resnet,就是通过残差网络的堆叠,增加网络层数,以此来提升精度。
2、网络宽度的增加,通过增加每层网络的特征层数,提取更多的特征,以此来提升精度。
3、图像分辨率的增加,分辨率越高的图像,所能获取的信息越多,网络能够学习到更多的特征,从而提升精度。

EfficientNet特点:
历史的实验经验表明,对于卷积神经网络的提升,着重点在于网络深度,网络宽度,分辨率这三个维度。因此,efficientnet应运而生,efficientnet结合了这三个优点,很好的平衡深度、宽度和分辨率这三个维度,通过一组固定的缩放系数统一缩放这三个维度。

EfficientNet和其他网络的比较,我们可以看出EfficientNet相对于其他网络,有了质的突破:

在这里插入图片描述

网络结构:
在这里插入图片描述
EfficientNet使用了MobileNet V2中的MBCConv作为模型的主干网络,同时也是用了SENet中的squeeze and excitation方法对网络结构进行了优化。

SEnet模块:
在这里插入图片描述
SE模块由一个全局平均池化,两个全连接层组成。第一个全连接层的节点个数是输入该MBConv特征矩阵channels的1/4,且使用Swish激活函数。第二个全连接层的节点个数等于Depthwise Conv层输出的特征矩阵channels,且使用Sigmoid激活函数。

四、使用VGG模型进行猫狗大战

下载数据:

! wget http://fenggao-image.stor.sinaapp.com/dogscats.zip
! unzip dogscats.zip

创建 VGG Model:

model_vgg = models.vgg16(pretrained=True)

with open('./imagenet_class_index.json') as f:
    class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]

inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)

outputs_try = model_vgg(inputs_try)

print(outputs_try)
print(outputs_try.shape)
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)

print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)

print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
       title=[dset_classes[x] for x in labels_try.data.cpu()])

我们的目标是使用预训练好的模型,因此,需要把最后的 nn.Linear 层由1000类,替换为2类。为了在训练中冻结前面层的参数,需要设置 required_grad=False。这样,反向传播训练梯度时,前面层的权重就不会自动更新了。训练中,只会更新最后一层的参数。

print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

print(model_vgg_new.classifier)

训练并测试全连接层,包括三个步骤:第1步,创建损失函数和优化器;第2步,训练模型;第3步,测试模型。

criterion = nn.NLLLoss()

# 学习率
lr = 0.001

# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)

def train_model(model,dataloader,size,epochs=1,optimizer=None):
    model.train()
    
    for epoch in range(epochs):
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            print('Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
        
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
            optimizer=optimizer_vgg)  

可视化模型预测结果(主观分析)

# 单次可视化显示的图片个数
n_view = 8
correct = np.where(predictions==all_classes)[0]
from numpy.random import random, permutation
idx = permutation(correct)[:n_view]
print('random correct idx: ', idx)
loader_correct = torch.utils.data.DataLoader([dsets['valid'][x] for x in idx],
                  batch_size = n_view,shuffle=True)
for data in loader_correct:
    inputs_cor,labels_cor = data
# Make a grid from batch
out = torchvision.utils.make_grid(inputs_cor)
imshow(out, title=[l.item() for l in labels_cor])

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值