ShuffleNet V1、V2 & EfficientNet & 迁移学习

一、ShuffleNet V1

        ShuffleNet Unit中全是GConv和DWConv。

        在左侧的网络结构中,对于输入特征矩阵,有串行的GConv1和GConv2,对于普通的组卷积的计算,只针对该组内的channel的信息进行计算。组卷积虽然能够减少参数和计算量,但是组卷积中不同组之间的信息没有交流。为了解决这个问题,论文中提出了Channel Shuffle的概念。

        将输入特征矩阵先通过GConv,得到对应的特征矩阵,然后对于GConv1假设采用3个组,即g=3,对于得到的特征矩阵继续划分,每个组序号相同的再分到一个组,就可以得到通过Channel Shuffle后的特征矩阵,再通过GConv2,得到输出特征矩阵。

         我们先看一下ShuffleNet的性能指标:

         ShuffleNet 0.5x版本虽然错误率与AlexNet差不多,但是它的推理时间较AlexNet少了很多。

        而且ShuffleNet 2x版本与1.0 MobileNet-224推理时间相差不大,但是错误率更低。

        由于1x1的卷积占据了大部分的计算量,所以论文中将1x1的卷积换成了1x1的GConv。

        

        FLOPs(计算量)的计算:

 二、ShuffleNet V2

        论文中提到了计算复杂度不能只看FLOPs,提出了4条设计高效网络准则,提出了新的block设计。

         FLOPs是一个评价网络性能的间接的因素,而推理速度则是直接的因素。不能只看FLOPs有两个原因,一个是还有一些其他的因素需要考虑,而看FLOPs并没有考虑到这些其他的因素;另一个是FLOPs相同的情况下,运行时间可能并不相同。

        

        根据上图所示,卷积占据了推理的绝大部分时间,但是还有一些其他的操作,也会占据很多时间,比如data I/O,data shuffle等等。

        4条设计高效网络准则:

  • 当卷积层的输入特征矩阵与输出特征矩阵channel相等时MAC最小(保持FLOPs不变时)
  • 当GConv的groups增大时(保持FLOPs不变时),MAC也会增大
  • 网络设计的碎片化程度越高,速度越慢
  • Element-wise操作带来的影响是不可忽视的  

        那么根据这4条准则,论文中写了如何设计高效的网络

        设计出的ShuffleNet V2的结构(图中的(c)、(d))如下:

        

         那么搭建ShuffleNet V2的网络结构如下:

        

三、EfficientNet

         先看一下EfficientNet与其他网络相比,具有的优势:

         可以看出EfficientNet不仅准确率高,使用的参数量还少。

        

        从上图可以看出,如果单纯的增加网络的深度、宽度或者图像分辨率,在准确率达到80%左右就接近饱和了。但是如果三者同时增加,准确率不仅没有达到饱和,而且在逐渐上升。

        增加网络的深度,能够得到更加丰富、复杂的特征并且能够很好地应用到其他任务中,但是网络的深度过深会面临梯度消失,训练困难的问题。

        增加网络的宽度能够获得更高细粒度的特征,并且更容易训练,但对于宽度很大且深度较浅的网络,往往很难学习到更深层次的特征。

        增加输入网络的图像分辨率能够潜在的获得更高细粒度的特征模板,但对于非常高的输入分辨率,准确率的增益也会减小,并且大分辨率图像会增加计算量。

        EfficientNet-B0 baseline network网络结构如下:

        

         其中stage 1就是3x3的卷积层,stage 2-8是MobileNet结构,stage 9是1x1的卷积层、池化层与全连接层。表中的Layers代表该层的网络重复几次。

        采用的MBConv结构如下:

         其中SE模块结构如下:

        

         EfficientNet B1-B7是在B0的基础上进行了参数上的改造

        

四、Transformer中的Multi-Head Attention

Self-Attention:

Multi-Head Attention:

 

1个head的情况:

 2个head的情况:

 

得到的b分别进行拼接操作

 

拼接完成之后再进行一个融合,得到最终的b1,b2。

 

五、使用VGG进行猫狗大战

首先将运行配置改为GPU,引入相应的库

 加载数据集

 先进行数据的处理

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

vgg_format = transforms.Compose([
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ])

data_dir = './dogscats'

dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
         for x in ['train', 'valid']}

dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']}
dset_classes = dsets['train'].classes

# 通过下面代码可以查看 dsets 的一些属性

print(dsets['train'].classes)
print(dsets['train'].class_to_idx)
print(dsets['train'].imgs[:5])
print('dset_sizes: ', dset_sizes)


loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
loader_valid = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=False, num_workers=6)


'''
valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
'''
count = 1
for data in loader_valid:
    print(count, end='\n')
    if count == 1:
        inputs_try,labels_try = data
    count +=1

print(labels_try)
print(inputs_try.shape)


# 显示图片的小程序

def imshow(inp, title=None):
#   Imshow for Tensor.
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = np.clip(std * inp + mean, 0,1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# 显示 labels_try 的5张图片,即valid里第一个batch的5张图片
out = torchvision.utils.make_grid(inputs_try)
imshow(out, title=[dset_classes[x] for x in labels_try])

创建VGG模型,我们直接使用预训练好的 VGG 模型。同时,为了展示 VGG 模型对本数据的预测结果,还下载了 ImageNet 1000 个类的 JSON 文件。

!wget https://s3.amazonaws.com/deep-learning-models/image-models
/imagenet_class_index.json


model_vgg = models.vgg16(pretrained=True)

with open('./imagenet_class_index.json') as f:
    class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]

inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)

outputs_try = model_vgg(inputs_try)

print(outputs_try)
print(outputs_try.shape)

'''
可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
但是我也可以观察到,结果非常奇葩,有负数,有正数,
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)

print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)

print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
       title=[dset_classes[x] for x in labels_try.data.cpu()])

 修改最后一层,冻结前面层的参数

print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

print(model_vgg_new.classifier)

 训练并测试全连接层

'''
第一步:创建损失函数和优化器

损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签. 
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络. 
'''
criterion = nn.NLLLoss()

# 学习率
lr = 0.001

# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)

'''
第二步:训练模型
'''

def train_model(model,dataloader,size,epochs=1,optimizer=None):
    model.train()
    
    for epoch in range(epochs):
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            print('Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
        
        
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
            optimizer=optimizer_vgg)  

def test_model(model,dataloader,size):
    model.eval()
    predictions = np.zeros(size)
    all_classes = np.zeros(size)
    all_proba = np.zeros((size,2))
    i = 0
    running_loss = 0.0
    running_corrects = 0
    for inputs,classes in dataloader:
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model(inputs)
        loss = criterion(outputs,classes)           
        _,preds = torch.max(outputs.data,1)
        # statistics
        running_loss += loss.data.item()
        running_corrects += torch.sum(preds == classes.data)
        predictions[i:i+len(classes)] = preds.to('cpu').numpy()
        all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
        all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
        i += len(classes)
        print('Testing: No. ', i, ' process ... total: ', size)        
    epoch_loss = running_loss / size
    epoch_acc = running_corrects.data.item() / size
    print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
    return predictions, all_proba, all_classes
  
predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['valid'])
  

 

 

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值