题目:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
作者:GOOGLE Mingxing Tan Quoc V. Le
Motivation:
作者认为网络的扩展是对效果有很大帮助的,但是人们一直没有找到一个有效的扩展方法。通过人工去调整 depth, width, resolution 的放大或缩小的很困难的,在计算量受限时有放大哪个缩小哪个,这些都是很难去确定的。作者发现在网络扩展时,通过平衡网络的深度、宽度、像素大小之间的关系来建模,可以取得惊人的效果,因此提出EfficientNet.
还是先看效果图:
Related Works:
计算accuracy:
单stage:
多stage: