[论文解读]ICML 2019|EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

EfficientNet是谷歌提出的重新思考模型扩展的方法,通过平衡深度、宽度和分辨率的关系,实现更高效的CNN。作者通过复合缩放(Compound Scaling)策略,找到了优化网络性能的参数组合,超越了多个经典网络,在多个数据集上表现出色。论文的核心是寻找网络维度的最佳平衡,以提高准确性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
作者:GOOGLE Mingxing Tan Quoc V. Le

Motivation:
作者认为网络的扩展是对效果有很大帮助的,但是人们一直没有找到一个有效的扩展方法。通过人工去调整 depth, width, resolution 的放大或缩小的很困难的,在计算量受限时有放大哪个缩小哪个,这些都是很难去确定的。作者发现在网络扩展时,通过平衡网络的深度、宽度、像素大小之间的关系来建模,可以取得惊人的效果,因此提出EfficientNet.
还是先看效果图:

在这里插入图片描述

Related Works:
计算accuracy:
单stage:
在这里插入图片描述
多stage:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值