mysql索引
索引的出现是为了提高查询效率,但是实现索引的方式却有很多种,所以这里也就引入了索引模型的概念。可以用于提高读写效率的数据结构很多,这里我先介绍三种常见、也比较简单的数据结构,它们分别是哈希表、有序数组和搜索树。
哈希表
哈希表是一种以键 - 值(key-value)存储数据的结构,我们只要输入待查找的值即 key,就可以找到其对应的值即 Value。哈希的思路很简单,把值放在数组里,用一个哈希函数把 key 换算成一个确定的位置,然后把 value 放在数组的这个位置。
哈希表的优点:等值查询非常快
缺点:因为不是有序的,所以哈希索引做区间查询的速度是很慢的。
有序数组
有序数组在等值查询和范围查询场景中的性能就都非常优秀。
优点:如果仅仅看查询效率,有序数组就是最好的数据结构了。
缺点:在需要更新数据的时候就麻烦了,往中间插入一个记录就必须得挪动后面所有的记录,成本太高。
二叉搜索树
二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子
想象一下一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。也就是说,对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询可真够慢的。
为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。那么,我们就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的大小。
InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的。B+树的形态:
B+树的形态:
每一个父节点都出现在子节点中,是子节点最大或者最小的值。
只有叶子节点包含数据
范围查询:
B+树的特征:
1.有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点。
2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接。(链表)
3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素。
4、B+树查找时是从上到下查找;B-树则是从下往上查找(中序遍历)
B+树的优势:
1.单一节点存储更多的元素(这样该节点下分支变多了,树变矮胖了),使得查询的IO次数更少。
2.所有查询都要查找到叶子节点,查询性能稳定。
3.所有叶子节点形成有序链表,便于范围查询。
基于主键索引和普通索引的查询有什么区别?
如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表。
1. EXPLAIN 你的 SELECT 查询
使用 EXPLAIN 关键字可以让你知道MySQL是如何处理你的SQL语句的。这可以帮你分析你的查询语句或是表结构的性能瓶颈。
EXPLAIN 的查询结果还会告诉你你的索引主键被如何利用的,你的数据表是如