基于Miller_Rabin生成大素数算法实现

Multimod()函数原理

素数检测

"""
主要用于素数检测
f_n_1()函数用来分解n − 1为 2^r*d,奇数为d
Multimod()函数用来快速幂分解
Miller_Rabin(n,k)函数调用前两个函数实现Miller_Rabin算法具体步骤
n代表判别,k代表出错概率
返回True即是素数(结果为素数的出错概率为(1/4)**k)
"""
from random import randint


def f_n_1(n):
    r=0
    if n%2==0:
        n=n/2
        r+=1
    return [r,n]
def multimod(a,k,n):    #快速幂取模
    ans=1
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值