TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution)
以下内容是根据B站清风老师数学建模视频做的笔记(B站指路:数学建模优劣解距离法TOPSIS模型)
1. 介绍
TOPSIS法(优劣解距离法)是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反应法各评价方案之间的差距。
2. 步骤
(1)第一步:将原始矩阵正向化
- 最常见的四种指标
指标名称 | 指标特点 | 例子 |
---|---|---|
极大型(效益型)指标 | 越大(多)越好 | 成绩、GDP增速 |
极小型(成本型)指标 | 越小(少)越好 | 费用、坏品率、污染程度 |
中间型指标 | 越接近某个值越好 | 水质量评估时的PH值 |
区间型指标 | 落在某个区间最好 | 体温、水中植物性营养物量 |
所谓将原始矩阵正向化,就是要将所有的指标类型统一转化为极大型指标(转化的函数形式不唯一)。
-
指标类型的转换:
- 极小型指标 -> 极大型指标
公式: max - x (如果所有元素均为正数,那么可以使用 1 x \frac{1}{x} x1
-
中间型指标 -> 极大型指标
{ x i } \{x_i\} {xi} 是一组中间型指标序列,且最佳的数值为 x b e s t x_{best} xbest ,那么正向化的公式如下:
M = m a x { ∣ x i − x b e s t ∣ } , x ^ i = 1 − ∣ x i − x b e s t ∣ M M = max{\{|x_i - x_{best}| \}}, \quad \hat{x}_i = 1 - \frac{|x_i - x_{best}|}{M} M=max{∣xi−xbest∣},x^i=1−M∣xi−xbest∣ -
区间型指标 -> 极大型指标
{ x i } \{x_i\} {xi} 是一组区间型指标序列,且最佳的区间为[a, b] ,那么正向化的公式如下:
M = m a x { a − m i n { x i } , m a x { x i } − b } , x ^ i = { 1 − a − x M , x < a 1 , a ≤ x ≤ b 1 − x − b M , x > b M = max{\{a - min\{x_i\}, \quad max\{x_i\} - b \}, \quad \hat{x}_i = \begin {cases} 1 - \frac{a-x}{M}, \quad x < a \\ \\ 1, \quad a \leq x \leq b \\ \\ 1 - \frac{x-b}{M}, \quad x > b \end {cases} } M=max{a−min{xi},max{xi}−b},x^i=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧1−Ma−x,x<a1,a≤x≤b1−Mx−b,x>b
(2)第二步:正向化矩阵标准化
-
标准化的目的是消除不同指标量纲的影响。
-
假设有 n 个要评价的对象,m 个评价指标(已经正向化)构成的正向化矩阵如下:
X = [ x 11 x 12 ⋯ x 1 m x 21 x 22 ⋯ x 2 m ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n m ] X = \left[ \begin {matrix} x_{11} \quad x_{12} \quad \cdots \quad x_{1m} \\ x_{21} \quad x_{22} \quad \cdots \quad x_{2m} \\ \vdots \quad \quad \vdots \quad \quad \ddots \quad \quad \vdots \\ x_{n1} \quad x_{n2} \quad \cdots \quad x_{nm} \end {matrix} \right] X=⎣⎢⎢⎢⎡x11x12⋯x1mx21x22⋯x2m⋮⋮⋱⋮xn1xn2⋯xnm⎦⎥⎥⎥⎤
那么,对其标准化的矩阵记为Z, Z中的每一个元素:
z i j = x i j ∑ i = 1 n x i j 2 z_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{n} x_{ij}^{2}}} zij=∑i=1nxij2xij 即: ( 每 一 个 元 素 其 所 在 列 的 元 素 的 平 方 和 ) (\frac{每一个元素}{其所在列的元素的平方和}) (其所在列的元素的平方和每一个元素)
(3)第三步:计算得分并归一化
假设有n个要评价的对象,m个评价指标的标准化矩阵:
Z
=
[
z
11
z
12
⋯
z
1
m
z
21
z
22
⋯
z
2
m
⋮
⋮
⋱
⋮
z
n
1
z
n
2
⋯
z
n
m
]
Z = \left[ \begin {matrix} z_{11} \quad z_{12} \quad \cdots \quad z_{1m} \\ z_{21} \quad z_{22} \quad \cdots \quad z_{2m} \\ \vdots \quad \quad \vdots \quad \quad \ddots \quad \quad \vdots \\ z_{n1} \quad z_{n2} \quad \cdots \quad z_{nm} \end {matrix} \right]
Z=⎣⎢⎢⎢⎡z11z12⋯z1mz21z22⋯z2m⋮⋮⋱⋮zn1zn2⋯znm⎦⎥⎥⎥⎤
-
定义最大值: Z + = ( Z 1 + , Z 2 + , ⋯ , Z m + ) Z^{+} = (Z_1^+,Z_2^+,\cdots,Z_m^+) Z+=(Z1+,Z2+,⋯,Zm+)
= ( m a x { z 11 , z 21 , ⋯ , z n 1 } , m a x { z 12 , z 22 , ⋯ , z n 2 } , ⋯ , m a x { z 1 m , z 2 m , ⋯ , z n m } ) \quad\quad\quad\quad\quad\quad\quad= (max{\{z_{11}, z_{21}, \cdots, z_{n1}\}},\quad max{\{z_{12}, z_{22}, \cdots, z_{n2}\}}, \quad \cdots, \quad max{\{z_{1m}, z_{2m}, \cdots, z_{nm}\}}) =(max{z11,z21,⋯,zn1},max{z12,z22,⋯,zn2},⋯,max{z1m,z2m,⋯,znm})
-
定义最小值: Z − = ( Z 1 − , Z 2 − , ⋯ , Z m − ) Z^{-} = (Z_1^-,Z_2^-,\cdots,Z_m^-) Z−=(Z1−,Z2−,⋯,Zm−)
= ( m i n { z 11 , z 21 , ⋯ , z n 1 } , m i n { z 12 , z 22 , ⋯ , z n 2 } , ⋯ , m i n { z 1 m , z 2 m , ⋯ , z n m } ) \quad\quad\quad\quad\quad\quad\quad\quad\quad= (min{\{z_{11}, z_{21}, \cdots, z_{n1}\}},\quad min{\{z_{12}, z_{22}, \cdots, z_{n2}\}}, \quad \cdots, \quad min{\{z_{1m}, z_{2m}, \cdots, z_{nm}\}}) =(min{z11,z21,⋯,zn1},min{z12,z22,⋯,zn2},⋯,min{z1m,z2m,⋯,znm})
-
定义第 i i i 个 ( i = 1 , 2 , ⋯ , n ) (i = 1, 2, \cdots, n) (i=1,2,⋯,n)个评价对象与最大值的距离 D i + = ∑ j = 1 m ( Z j + − z i j ) 2 D_i^+ = \sqrt{\sum_{j=1}^m (Z_j^+ - z_{ij})^2} Di+=∑j=1m(Zj+−zij)2
-
定义第 i i i 个 ( i = 1 , 2 , ⋯ , n ) (i = 1, 2, \cdots, n) (i=1,2,⋯,n)个评价对象与最小值的距离 D i − = ∑ j = 1 m ( Z j − − z i j ) 2 D_i^- = \sqrt{\sum_{j=1}^m (Z_j^- - z_{ij})^2} Di−=∑j=1m(Zj−−zij)2
-
可以计算得出第 i i i 个 ( i = 1 , 2 , ⋯ , n ) (i = 1, 2, \cdots, n) (i=1,2,⋯,n)个评价对象未归一化的得分: S i = D i − D i + + D i − S_i = \frac{D_i^-}{D_i^+ + D_i^-} Si=Di++Di−Di−
显然 0 ≤ S i ≤ 1 0 \leq S_i \leq 1 0≤Si≤1, 且 S i S_i Si越大,越接近最大值
以下是跟着视频敲的代码
topsis.m
% 注意:代码和数据要放在同一个目录下
clear;clc
load data_water_quality.mat
%% 第二步:判断是否需要正向化
[n, m] = size(X);
disp(['共有' num2str(n) '个评价对象,' num2str(m) '个评价指标'])
Judge = input(['这' num2str(m) '个指标是否需要经过正向化处理,需要请输入1,不需要请输入0:']);
if Judge == 1
Position = input('请输入需要正向化处理的指标所在的列,例如第2、3、6列需要处理,那么需要输入[2,3,6]: '); %[2,3,4]
disp('请输入需要处理的这些列的指标类型(1:极小型,2:中间型,3:区间型')
Type = input('例如:第2列是极小型,第三列是区间型,第6列是中间型,就输入[1 3 2]: '); %[2 1 3]
% 注意:Position和Type是两个同维度的行向量
for i = 1 : size(Position, 2)
X(:,Position(i)) = Positivization(X(:,Position(i)), Type(i), Position(i));
% Positivization是我们自己定义的函数,其作用是进行正向化,其一共接受三个参数
% 第一个参数是要正向化处理的那一列向量 X(:,Position(i))
% 第二个参数是对应的这一列的指标类型
% 第三个参数是告诉函数我们正在处理的是原始矩阵中的哪一列
% 该函数有一个返回值,它返回正向化之后的指标,我们可以将其直接赋值给我们原始要处理的那一列向量
end
disp('正向化后的矩阵 X = ')
disp(X)
end
%% 第三步:对正向化后的矩阵进行标准化
Z = X ./ repmat(sum(X .* X) .^ 0.5, n, 1);
disp('标准化矩阵 Z = ')
disp(Z)
%% 第四步:计算与最大值的距离和最小值的距离,并算出得分
D_P = sum([(Z - repmat(max(Z), n, 1)) .^ 2],2) .^ 0.5; % D+(与最大值的距离)向量
D_N = sum([(Z - repmat(min(Z), n, 1)) .^ 2],2) .^ 0.5; % D-(与最小值的距离)向量
S = D_N ./ (D_P + D_N)
stand_S = S / sum(S)
[sorted_S, index] = sort(stand_S, 'descend')
Positivization.m
function [posit_x] = Positivization(x, type, i)
if type == 1 %极小型
disp(['第' num2str(i) '是极小型,正在正向化'])
posit_x = Min2Max(x); %调用Min2Max函数来正向化
disp(['第' num2str(i) '列极小型正向化处理完成'])
disp('---------------------分界线---------------------')
elseif type == 2 %中间型
disp(['第' num2str(i) '是中间型'])
best = input('请输入最佳的那一个值: ');
posit_x = Mid2Max(x,best); %调用Mid2Max函数来正向化
disp(['第' num2str(i) '列中间型正向化处理完成'])
disp('---------------------分界线---------------------')
elseif type == 3 %区间型
disp(['第' num2str(i) '是区间型'])
a = input('请输入区间的下界: ');
b = input('请输入区间的上界: ');
posit_x = Inter2Max(x, a, b); %调用Inter2Max函数来正向化
disp(['第' num2str(i) '列区间型正向化处理完成'])
disp('---------------------分界线---------------------')
else
disp('没有这种类型的指标,请检查Type向量中是否有除了1、2、3之外的值')
end
end
Min2Max.m
function [posit_x] = Min2Max(x)
posit_x = max(x) - x;
% 如果x全部都大于0,也可以这样正向化:posit_x = 1/x;
end
Mid2Max.m
function [posit_x] = Mid2Max(x, best)
M = max(abs(x-best));
posit_x = 1 - abs(x-best)/M;
end
Inter2Max.m
function [posit_x] = Inter2Max(x, a, b)
r_x = size(x, 1);
M = max([a-min(x), max(x)-b]);
posit_x = zeros(r_x, 1); %初始化posit_x全为0
for i = 1:r_x
if x(i) < a
posit_x(i) = 1 - (a - x(i))/M;
elseif x(i) > b
posit_x(i) = 1 - (x(i) - b)/M;
else
posit_x(i) = 1;
end
end
end