TOPSIS法 —— matlab

目录

1.TOPSIS法介绍

2. 计算步骤

(1)数据标准化

(2)得到加权后的矩阵

(3)确定正理想解和负理想解 

(4)计算各方案到正(负)理想解的距离

(5)计算综合评价值

3.实例研究 

3.1 读取数据

3.2 数据标准化

3.3 得到信息熵

3.4 计算权重并计算权重数据

3.5 得到最大值和最小值距离

3.6 计算得分

总代码


1.TOPSIS法介绍

        TOPSIS法(Technique for Order Preference by Similarity to Ideal Solution),可翻译为逼近理想解排序法,国内常简称为优劣解距离法,TOPSIS 法是一种常用的综合评价方法,其能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。

2. 计算步骤

(1)数据标准化

        设决策矩阵为X=(xij)m×n,(在进行决策时,因决策属性类型的不同、属性量纲不同和属性值的大小不同,决策与评价的结果会受影响)进行属性值的规范化(方法不唯一,可视具体情况而定),设规范化决策矩阵(也就是标准化后的矩阵)X=(xij)m×n ,其中

(2)得到加权后的矩阵

计算信息熵:

权重为:

设标准化后的数据矩阵元素为rij  ,由上可得指标正向化后数据矩阵元素为xij' :

(3)确定正理想解和负理想解 

处理过后可以构成数据矩阵 R=(rij)m*n  

  • 定义每个指标即每列的最大值为正理想解

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值