通俗易懂的说清楚 TOPSIS逼近理想解排序法,原理,实操,案例说明讲解

1.基础概念

C.LJwang和K.Yoon于1981年首次提出 TOPSIS (Technique for Order Preference bySimilarity to an Ideal Solut ion),可翻译为逼近理想解排序法。在国内常简称为优劣解距离法。

TOPSIS法是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。
TOPSIS法引入了两个基本概念:

  • 理想解:设想的最优的解(方案),它的各个属性值都达到各备选方案中的最好的值;

  • 负理想解:设想的最劣的解(方案),它的各个属性值都达到各备选方案中的最坏的值。

在这里插入图片描述

方案排序的规则
是把各备选方案与理想解和负理想解做比较,若其中有一个方案最接近理想解,而同时又远离负理想解,则该方案是备选方案中最好的方案。TOPSIS通过最接近理想解且最远离负理想解来确定最优选择。

例如问题:

你想要找个对象,但喜欢你的人太多,不知道怎么选,下面是你的三个候选人
在这里插入图片描述

理想情况下:

最好的对象应该是颜值9,脾气3。

最差的对象应该是颜值6,脾气10。

那么可以把这几个点映射到一个二维空间中,其中距离最好点最近或者距离最差点最远的的就是综合条件最好的

最好的(9,3) ,最差的就是(6,10)。注意是现有数据里面推出来最好的和最差的。
在这里插入图片描述

2.模型原理与基本步骤

2.1模型原理

TOPSIS法是一种理想目标相似性的顺序选优技术,在多目标决策分析中是一种非常有效的方法。它通过归一化后(去量纲化)的数据规范化矩阵,找出多个目标中最优目标和最劣目标(分别用理归想一解化和反理想解表示),分别计算各评价目标与理想解和反理想解的距离,获得各目标与理想解的贴近度,按理想解贴近度的大小排序,以此作为评价目标优劣的依据。贴近度取值在0~1之间,该值愈接近1,表示相应的评价目标越接近最优水平;反之,该值愈接近0,表示评价目标越接近最劣水平。

2.2 基本步骤

2.2.1.将原始矩阵正向化

将原始矩阵正向化,就是要将所有的指标类型统一转化为极大型指标。

这是由于有很多时候,有些指标的好坏的评价并不是统一的

比如有的时候利润肯定是越大越好,说明我们挣到钱了。那成本的话,就肯定是越小越好,因为这样我们的利润就更高了。这两个就是典型的评价的。

还有一些指标可能是趋近某个区间、某个数值是最好的,最典型是就是PH值。
有的时候我们要的就是PH值为中性的值,所以也就不是越大或者越小就最好

2.2.2.正向矩阵标准化

标准化的方法有很多种,其主要目的就是去除量纲的影响,保证不同评价指标在同一数量级,且数据大小排序不变。

就比如找对象,一个指标可能是工资的多少,一个指标是这个身高。那工资和身高明显差距太大了,如果没有映射到一个区间。可能一个矮的离谱的人1.3,1.5万工资,就比1.88米的1.4万收入的人排序就更高的。

2.2.3.计算得分并归一化

S i = D i − D i + + D i − S_i = \frac{D_i^-}{D_i^+ + D_i^-} Si=Di++DiDi
其中Si为得分,Di+为评价对象与最大值的距离,Di-为评价对象与最小值的距离

2.4 指标类型

现在你要找一个选项,之前是光考虑了颜值和脾气,现在你觉得光靠颜值和脾气可能考虑的还不够全面,就又加上了身高和体重两个指标。

而且咱们暂时定在认为身高165是最好,体重在90-100斤是最好。

一定要注意我们这里是指标作为列,备选的人作为行数据,不要自己的数据进来算的时候,弄颠倒了。

在这里插入图片描述

那么从上面的指标就可以将指标映射到下面这几类指标下:

那可看出指标有4中类型,极大、极小和中间型、区间型
在这里插入图片描述

3.实际操作说明

3.1原始矩阵正向化-4类指标

将原始矩阵正向化,就是要将所有的指标类型统一转化为极大型指标

在这里插入图片描述
那么我们看下面的指标,就可以发现颜值是一个极大型指标,那么就可以不用转换成为极大型指标了。
在这里插入图片描述
脾气是一个极小型指标,那么就需要将其转为极大型。这个就很简单,就是把它倒过来就是极大型,将最大值变成0。
找到对应列的最大值max=10。 max-10=0。那么3就变为了max-3=7。最小变最大,最大变最小。

咱们暂时定在认为身高165是最好,体重在90-100斤是最好

身高是一个中间型指标,假设我们希望最理想的身高是165=Xbest。
每一列减去Xbest:|175-165| 、 |164-165|、|157-165| 的最大值是10
那么M就是10;
1- |175-165|/10 = 0

1- |164-165|/10 = 9/10 可以看到最远的变成了0,最近的接近了1.
在这里插入图片描述
同理,区间型的就可以按照区间的公式进行计算,要有一个最佳的区间[a,b] 的 值。体重在90-100斤是最好,[90,100]

也是要找到M。 M=max{90- 90,120-100} 那么M=20

然后用后面的公式计算区分当前值在是小于最小值90,还是大于最大值100,以及在区间内计算
在这里插入图片描述

经过下面的计算,就可以得到正向化后的矩阵:
在这里插入图片描述

3.2正向化矩阵转为标准化矩阵Z

标准化的目的是消除不同指标量纲的影响

在这里插入图片描述

标准化后,还需给不同指标加上权重,采用的权重确定方法有层次分析法、嫡权法、Delphi法、对数最小二乘法等。

这里呢就是TOPSIS和各种权重方法结合的评价方法了,比如论文中常见的就是嫡权+TOPSIS。自己可以后续去继续学习。

在这里先暂时认为各个指标的权重相同,不做过多的分析了。

通过上面的公式作为将正向化矩阵转为标准化矩阵Z
在这里插入图片描述

3.3标准化矩阵Z-得分计算

当我们得到上面的标准化矩阵Z的时候,我们就可以根据标准话的矩阵,计算出其与最优和最差解之间的距离了。

为了方便说明,将上面的标准化矩阵Z用下面的矩阵来表示:
在这里插入图片描述

3.3.1 获得 Z + Z^+ Z+的集合和最小值 Z − Z^- Z

那么计算最大值 Z + Z^+ Z+的集合和最小值 Z − Z^- Z的集合。通过这两个来算距离

注意啊 Z + Z^+ Z+是集合,不是一个值,同理 Z − Z^- Z

Z + = ( Z 1 + , Z 2 + , … , Z m + ) = ( max ⁡ { Z 11 , Z 21 , … , Z n 1 } , max ⁡ { Z 12 , Z 22 , … , Z n 2 } , … , max ⁡ { Z 1 m , Z 2 m , … , Z n m } ) Z^+ = (Z_1^+, Z_2^+, \ldots, Z_m^+) = \left( \max\{Z_{11}, Z_{21}, \ldots, Z_{n1}\}, \max\{Z_{12}, Z_{22}, \ldots, Z_{n2}\}, \ldots, \max\{Z_{1m}, Z_{2m}, \ldots, Z_{nm}\} \right) Z+=(Z1+,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

驭风少年君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值