【基于机器学习的脑电图识别】数据集篇:脑电信号自动判读的大数据
数据库地址:
http://www.nedcdata.org/(似乎要翻 墙)
摘要:
这个数据集包括超过 25000 个脑电图研究,包括一个神经学家对测试的解释,一个简短的病人病史和关于病人的人口统计信息,如性别和年龄,是第一次有足够的数据来支持最先进的机器学习算法的应用;
脑电图事件被定义为信号中的临界点,如与特定疾病的存在相关的尖峰或非对称波形;
在这篇论文中,作者使用了3762个数据集的会话子集(这是啥?),展示了从原始脑电图信号数据预测脑电图的一些基本属性的初步实验结果;
在闭环测试中,标准的机器学习方法被证明能够从简单的特征中预测常见的事件,并且具有很高的准确性,在 6 路开放集分类问题上,它的错误率低于