手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)

本文介绍了如何在Windows环境下,从安装Anaconda、创建虚拟环境到利用YOLOv5训练自己的目标检测数据集,包括数据标注、预处理、下载预训练模型及模型训练的全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

本文禁止转载

前言:

今天有时间,就写一下用yolov5训练自己数据集的博客吧。
在这里插入图片描述

1. 安装Anaconda:

Anaconda官网:https://www.anaconda.com/

在这里插入图片描述

在这里插入图片描述

要使用Yolov5训练自己的数据集,首先需要在Windows环境下进行配置和模型部署。以下是一步一步的指导: 1. 确保你的电脑上安装了Python和PyTorch。你可以在官方网站上下载并安装它们。 2. 下载Yolov5源代码。你可以在GitHub上找到Yolov5的仓库,下载并解压文件到你的电脑上。 3. 准备你自己的数据集。你需要将数据集的图像和标签准备好,并按照Yolov5的格式进行标注。确保每个标签文件与其对应的图像在同一个文件夹下。 4. 修改Yolov5的配置文件。在源代码文件夹中找到`yolov5/models/yolov5s.yaml`文件,使用文本编辑器打开它。根据你的数据集,修改`nc`(类别数)和`names`(类别名称)的值。 5. 划分数据集。将数据集划分为训练集和验证集。在`data`文件夹中创建一个`train.txt`文件,将训练集图片的路径写入其中。同样地,在`data`文件夹中创建一个`val.txt`文件,将验证集图片的路径写入其中。 6. 开始训练。打开命令提示符(CMD)或PowerShell,并进入Yolov5源代码的文件夹目录。输入以下命令开始训练:`python train.py --img 640 --batch 16 --epochs 100 --data data.yaml --cfg models/yolov5s.yaml --weights '' --name yolov5s_results`。请根据你的需要进行参数的调整。 7. 完成训练后,你将得到训练好的模型。该模型将保存在`runs/train/`文件夹中,你可以在该文件夹中找到最佳的模型权重文件。 8. 部署模型。你可以使用该模型进行目标检测任务。在源代码文件夹中,找到`detect.py`文件,并使用文本编辑器打开它。根据你的需求,修改`weights`参数为你训练得到的模型权重文件路径。 9. 运行检测脚本。在命令提示符或PowerShell中输入以下命令:`python detect.py --source test.jpg --weights runs/train/yolov5s_results/weights/best.pt`。请将`test.jpg`替换为你想要进行目标检测的图片。 通过按照上述步骤进行操作,你就可以使用Yolov5训练自己的数据集,并进行模型部署了。记得根据你的具体情况进行参数和路径的调整。祝你成功!
评论 66
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值