【CVPR 2021】剪枝篇(五):基于关键通路的神经网络可解释剪枝

该博客探讨了神经网络剪枝中关键通路的重要性,指出剪枝可能导致非理想的稀疏路径,无法正确反映输入的稀疏编码。作者提出通过神经元对响应的贡献进行路径选择,并证明了路径的局部线性性质。通过关键路径的解释,作者提出了名为“路径梯度”的特征归因方法,强调了正确选择路径对于有效特征归因和模型理解的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:

https://arxiv.org/abs/2103.16886

主要问题:

作者认为神经网络对于输入的响应存在着一条特定的稀疏的“路径”,并且作者证明了从剪枝中得到的稀疏路径并不一定编码关键的输入信息

主要思路:

为了确保稀疏路径包括编码输入信息的关键片段,作者提出了可以通过神经元对响应的贡献进行路径选择,并继续解释了关键的路径如何编码关键的输入特征,随后证明了通过神经元贡献选择的路径是局部线性的(在 l 2 l_2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值