【2022】将3D目标检测看作序列预测-Point2Seq: Detecting 3D Objects as Sequences

Point2Seq是将3D目标检测转换为序列预测任务的一种新方法,受到Pix2seq启发但针对3D场景。它通过场景到序列解码器自回归生成对象序列,并使用基于相似性的序列匹配进行端到端训练,无需预先定义的锚点或中心。在ONCE和Waymo数据集上,该方法表现优越。
摘要由CSDN通过智能技术生成

论文地址:

https://arxiv.org/abs/2203.13394

代码地址:

https://github.com/ocNflag/point2seq

论文简介:

这篇文章主要是参考了Google去年的Pix2seq目标检测模型:

在这里插入图片描述

这篇文章跟Pix2seq基本一致,只不过将每个3D对象视为一系列单词序列,并将3D对象检测任务重新表示为以自回归的方式从3D场景中解码单词

但是全文看下来仿佛还是更接近传统的锚框/中心检测方法,跟Pix2seq模型的动机不太一致,因为Point2Seq仍采用基于特征像素点的密集预测以及回归坐标的方法,并且单词表示仍采用连续表示,无法拓展到多任务多模型,语言建模也仅体现在顺序预测上

此外匹配部分仍采用了Detr中的二分匹配,感觉是3D Detr的翻版而非P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值