原题链接
题目大意:
对于一个非递减数组,数组最开始的若干个元素搬到数组的末尾,比如[3,4,5,1,2]旋转前的数组为[1,2,3,4,5]。即将其分割成两个非递减数组。可以直接使用顺序遍历,时间复杂度为O(n)。
因为分割后的数组相当于两个有序数组,因此可以使用二分法的思想。大致思路如下:
选取数组最左边的点为target值,每次二分后用mid值与target值进行比较,会出现三种情况:
(1)mid>target ,由于原数组非递减,所以数组中从最左边到mid值的数都大于等于target值,如[4,5,6,1,2,3],所以从mid后开始,即遍历first=mid+1;
(2)mid<target,所以最小值一定在mid的左侧,并且mid也有可能是最小值点,所以last=mid向左遍历;
(3)mid=traget,无法判断最小值在哪侧,所以从最右侧last点逐个遍历。
循环结束条件:
first=last时循环结束,此时first、last、mid在一个点上,该点即为最小值
class Solution:
def minNumberInRotateArray(self, rotateArray):
# write code here
first=0
last=len(rotateArray)-1
while first<last:
mid=(first+last)//2#除法:/; 取整://; 取余:%
if rotateArray[mid]>rotateArray[last]:
first=mid+1
elif rotateArray[mid]<rotateArray[last]:
last=mid
else:
last=last-1
return rotateArray[last]