文章目录
单高斯算法视频前景提取
在静态背景下的视频前景提取
单高斯模型 SGM(Single Gaussian background model)[4]是一种图像处理背景提取的处理方法,适用于背景单一不变的场合。对于视频图像中任意一个像素点,将每个像素点的变化看作是不断产生像素点的随机过程,在时间轴 上像素值属于离散分布。在任意时刻 ,各像素值可以表示为:
{ I ( x , y , z ) , 1 ≤ i ≤ t } = { X 1 , X 2 , . . . , X t } \{I(x,y,z),1\leq i\leq t\}=\{X_1,X_2,...,X_t\} {
I(x,y,z),1≤i≤t}={
X1,X2,...,Xt}
式中,I(x,y,i) 表示第i 帧图像中(x,y)点处的像素值。根据高斯建模原理,上式中各点均符合高斯分布:
P ( X i ) = 1 2 π σ e ( x i − μ ) 2 σ 2 , X i ∈ I ( x , y , i ) P(X_i)=\frac{1}{\sqrt{2\pi\sigma}}{e^{\frac{(x_i-\mu)}{2\sigma^2}}},X_i\in I(x,y,i) P(Xi)=2πσ1e2σ2(xi−μ),Xi∈I(x,y,i)
式中,u和sigma分别表示 时刻高斯分布的均值和标准方差,Xt是t时刻的像素值,
用单高斯模型进行运动检测的基本过程包括:模型的初始化、更新参数并检测两个步骤。
(1)模型初始化
模型的初始化即对每个像素位置上对应的高斯模型参数进行初始化,初始化采用如下公式完成
{ μ ( x , y , 0 = I ( x , y , 0 ) ) σ 2 ( x , y , 0 ) = i n i t 2 σ ( x , y , 0 ) = i n i t \begin{cases} \mu(x,y,0=I(x,y,0))\\ \sigma^2(x,y,0)=init_2\\ \sigma(x,y,0)=init \end{cases} ⎩⎪⎨⎪⎧μ(x,y,0=I(x,y,0))σ2(x,y,0)=init2σ(x,y,0)=init
其中,I(x,y,i)是视频第一帧图像(x,y)位置的像素值,init为常数,一般为20。
(2)更新参数并检测
每读入一张新的图片,判断新图片中对应点像素是否在高斯模型描述的范围中,如是,则判断改点处为背景,否则,判断为前景。则可得
F B t ( x , y ) = { 0 , ∣ I ( x , y , t ) − μ ( x , y , t − 1 ) ∣ < λ × σ ( x , y ,