数据分析基础之matplotlib绘制散点图

matplotlib绘制其他图形

      matplotlib能够绘制折线图、散点图、柱状图、直方图、箱线图、饼图等。
官方文档:https://matplotlib.org/
      因此需要直到不同的统计图到底能够表示出什么,以此来决定选择哪种统计图来更直观的呈现数据。

对比常用统计图

  1. 折线图:以折线的上升或下降来表示统计数量的增减变化的统计图
    特点:能够显示数据的变化趋势,反映事物的变化情况(变化)
    在这里插入图片描述
  2. 直方图:右一系列高度不等的纵向条纹或线段表示数据分布的情况。一般用横轴表示数据范围,纵轴表示分布情况。
    特点:绘制连续性的数据,展示一组或者多组数据分布状况(统计)
    在这里插入图片描述
  3. 条形图:排列在工作表的列或行中的数据可以绘制到条形图。
    特点:绘制离散的数据,能够一眼看出各个数据的大小,比较数据之间的差别(统计)
    在这里插入图片描述
  4. 散点图:用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。
    特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律)
    在这里插入图片描述

绘制散点图

      假设通过爬虫爬到3月,10月每天白天的最高气温分别位于列表a,b,那么此时如何找出气温和随时间变化的某种规律?
a:[11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
b:[26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]

from matplotlib import pyplot as plt
from matplotlib import font_manager

my_font = font_manager.FontProperties(fname="C:/Windows/Fonts/SIMYOU.TTF")

y_3 = [11,17,16,11,12,11,12,6,6,7,8,9,12,15,14,17,18,21,16,17,20,14,15,15,15,19,21,22,22,22,23]
y_10 = [26,26,28,19,21,17,16,19,18,20,20,19,22,23,17,20,21,20,22,15,11,15,5,13,17,10,11,13,12,13,6]

x_3 = range(1,32)
x_10 = range(51,82)

# 设置图形大小
plt.figure(figsize=(20,8),dpi=80)

# 使用scatter方法绘制散点图,和之前绘制折线图的唯一区别
plt.scatter(x_3,y_3,label="3月份")
plt.scatter(x_10,y_10,label="10月份")

# 调整x轴的刻度
_x = list(x_3)+list(x_10)
_xticks_labels = ["3月{}日".format(i) for i in x_3]
_xticks_labels += ["10月{}日".format(i-50) for i in x_10]
plt.xticks(_x[::2],_xticks_labels[::2],rotation=45,fontproperties=my_font)

# 添加描述信息
plt.xlabel("时间",fontproperties=my_font)
plt.ylabel("温度",fontproperties=my_font)
plt.title("标题",fontproperties=my_font)

#添加图例
plt.legend(loc="upper left",prop=my_font)
# 展示
plt.show()
结果显示:

在这里插入图片描述
散点图的应用场景:

  1. 不同条件(维度)之间的内在关联关系
  2. 观察数据的离散程度
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读