深度学习:基于python 第五章:误差反向传播法

第5章 误差反向传播法

数值微 分虽然简单,也容易实现,但缺点是计算上比较费时间。本章我们将学习一 个能够高效计算权重参数的梯度的方法——误差反向传播法。

要正确理解误差反向传播法,我个人认为有两种方法:一种是基于数学式; 另一种是基于计算图(computational graph)

5.1 计算图

5.1.1 用计算图求解

问题2:太郎在超市买了2个苹果、3个橘子。其中,苹果每个100日元, 橘子每个150日元。消费税是10%,请计算支付金额。
在这里插入图片描述

综上,用计算图解题的情况下,需要按如下流程进行。

  • 1.构建计算图。
  • 2.在计算图上,从左向右进行计算。

这里的第2歩“从左向右进行计算”是一种正方向上的传播,简称为正向传播(forward propagation)。正向传播是从计算图出发点到结束点的传播

既然有正向传播这个名称,当然也可以考虑反向(从图上看的话,就是从右向左) 的传播。实际上,这种传播称为反向传播(backward propagation)。

5.1.2 局部计算

计算图的特征是可以通过传递“局部计算”获得最终结果。

局部计算是指,无论全局发生了什么, 都能只根据与自己相关的信息输出接下来的结果。

5.1.3 为何用计算图解题

在这里插入图片描述

综上,计算图的优点是,可以通过正向传播和反向传 播高效地计算各个变量的导数值。

5.2 链式法则

而反向传播将局部导数向正方向的反方向(从右到左)传递,一开始可能会让人感到困惑。 传递这个局部导数的原理,是基于链式法则(chain rule)的。

5.2.1 计算图的反向传播

在这里插入图片描述

5.2.2 什么是链式法则

在这里插入图片描述

链式法则是关于复合函数的导数的性质,定义如下。

​ 如果某个函数由复合函数表示,则该复合函数的导数可以用构成复 合函数的各个函数的导数的乘积表示。
在这里插入图片描述
在这里插入图片描述

5.2.3 链式法则和计算图

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

*5.3 反向传播

本节将以“+” 和“×”等运算为例,介绍反向传播的结构

5.3.1 加法节点的反向传播

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.3.2 乘法节点的反向传播

在这里插入图片描述

乘法的反向传播会将上游的值乘以正向传播时的输入信号的**“翻转值”** 后传递给下游。翻转值表示一种翻转关系,

如图5-12所示,正向传播时信号 是x的话,反向传播时则是y;正向传播时信号是y的话,反向传播时则是x。
在这里插入图片描述

  • 乘法的反向传播会乘以输入信号的翻转值,所以各自可按1.3 × 5 = 6.5、1.3 × 10 = 13计算。
  • 乘法的反向传播需要正向传播时的输 入信号值。因此,实现乘法节点的反向传播时,要保存正向传播的输入信号。
  • 另外,加法的反向传播只是将上游的值传给下游, 并不需要正向传播的输入信号

5.3.3 苹果的例子

在这里插入图片描述
在这里插入图片描述

*5.4 简单层的实现

本节将用Python实现前面的购买苹果的例子。这里,我们把要实现 的计算图的乘法节点称为“乘法层”(MulLayer),加法节点称为“加法层” (AddLayer)。

我们将把构建神经网络的“层”实现为一个类。这里所 说的“层”是神经网络中功能的单位。比如,负责 sigmoid函数的 Sigmoid、负责矩阵乘积的Affine等,都以层为单位进行实现。因此, 这里也以层为单位来实现乘法节点和加法节点

5.4.1 乘法层的实现

层的实现中有两个共通的方法(接口)forward()和backward()forward() 对应正向传播backward()对应反向传播

class MulLayer:
     def __init__(self):
         self.x = None
         self.y = None
            
     def forward(self, x, y):
         self.x = x
         self.y = y
         out = x * y
         return out
    
     def backward(self, dout):
         dx = dout * self.y # 翻转x和y
         dy = dout * self.x
         return dx, dy

_ _ init _ _()中会初始化实例变量x和y,它们用于保存正向传播时的输入值。

forward()接收x和y两个参数,将它们相乘后输出。

backward()将从上游传来的导数(dout)乘以正向传播的翻转值,然后传给下游。

实现函数

apple = 100
apple_num = 2
tax = 1.1

# layer
mul_apple_layer = MulLayer() #记录苹果的价格*个数,还有此时dout
mul_tax_layer = MulLayer() #记录总价*消费税,还有此时dout

# forward
apple_price = mul_apple_layer.forward(apple, apple_num)
price = mul_tax_layer.forward(apple_price, tax)

print(price) # 220

# backward
dprice = 1
dapple_price, dtax = mul_tax_layer.backward(dprice)
dapple, dapple_num = mul_apple_layer.backward(dapple_price)

print(dapple, dapple_num, dtax) # 2.2 110 200

**调用backward()的顺序与调用forward()的顺序相反。**此外,要注 意backward()的参数中需要输入“关于正向传播时的输出变量的导数”。比如, mul_apple_layer乘法层在正向传播时会输出apple_price,在反向传播时,则 会将apple_price的导数dapple_price设为参数。

5.4.2 加法层的实现

class AddLayer:
     def __init__(self):
     	pass
    
     def forward(self, x, y):
         out = x + y
         return out
        
     def backward(self, dout):
         dx = dout * 1
         dy = dout * 1
         return dx, dy

加法层不需要特意进行初始化,所以 _ _ init _ _()中什么也不运行

**加法层的forward()接收x和y两个参数,将它们相加后输出。**backward()将上游传来的导数(dout)原封不动地传递给下游。
在这里插入图片描述

apple = 100  #苹果价格
apple_num = 2	
orange = 150
orange_num = 3
tax = 1.1		#消费税

# layer
mul_apple_layer = MulLayer()
mul_orange_layer = MulLayer()
add_apple_orange_layer = AddLayer()
mul_tax_layer = MulLayer()

# forward
apple_price = mul_apple_layer.forward(apple, apple_num) #(1)
orange_price = mul_orange_layer.forward(orange, orange_num) #(2)
all_price = add_apple_orange_layer.forward(apple_price, orange_price) #(3)
price = mul_tax_layer.forward(all_price, tax) #(4)

# backward
dprice = 1
dall_price, dtax = mul_tax_layer.backward(dprice) #(4)
dapple_price, dorange_price = add_apple_orange_layer.backward(dall_price) #(3)
dorange, dorange_num = mul_orange_layer.backward(dorange_price) #(2)
dapple, dapple_num = mul_apple_layer.backward(dapple_price) #(1)
print(price) # 715
print(dapple_num, dapple, dorange, dorange_num, dtax) # 110 2.2 3.3 165 650

综上,计算图中层的实现(这里是加法层和乘法层)非常简单,使用这 些层可以进行复杂的导数计算。下面,我们来实现神经网络中使用的层。

5.5 激活函数层的实现

现在,我们将计算图的思路应用到神经网络中。这里,我们把构成神经 网络的层实现为一个类。先来实现激活函数的ReLU层和Sigmoid层

5.5.1 ReLU层

在这里插入图片描述
在这里插入图片描述

class Relu:
     def __init__(self):
     	self.mask = None
        
     def forward(self, x):
         self.mask = (x <= 0) #这里把小于等于0的数True
         out = x.copy()
         out[self.mask] = 0		#把小于等于0的全赋值0
         return out
    
     def backward(self, dout):
         dout[self.mask] = 0
         dx = dout
         return dx

Relu类有实例变量mask。这个变量mask是由True/False构成的NumPy数组,它会把正向传播时的输入x的元素中小于等于0的地方保存为True,其他地方(大于0的元素)保存为False。

>>> x = np.array( [[1.0, -0.5], [-2.0, 3.0]] )
>>> print(x)
[[ 1. -0.5]
 [-2. 3. ]]
>>> mask = (x <= 0)
>>> print(mask)
[[False True]
 [ True False]]

out = x.copy()
print(out)
[[ 1.  -0.5]
 [-2.   3. ]]

out[mask] = 0
print(out)
[[1. 0.]
 [0. 3.]]

如图5-18所示,如果正向传播时的输入值小于等于0,则反向传播的值为0。 因此,反向传播中会使用正向传播时保存的mask,将从上游传来的dout的 mask中的元素为True的地方设为0。

ReLU层的作用就像电路中的开关一样。正向传播时,有电流通过 的话,就将开关设为 ON;没有电流通过的话,就将开关设为 OFF。 反向传播时,开关为ON的话,电流会直接通过;开关为OFF的话, 则不会有电流通过

5.5.2 Sigmoid层

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

用Python实现Sigmoid层。
class Sigmoid:
     def __init__(self):
    	 self.out = None
        
     def forward(self, x):
         out = 1 / (1 + np.exp(-x))
         self.out = out
         return out
        
     def backward(self, dout):
         dx = dout * (1.0 - self.out) * self.out
         return dx

正向传播时将输出保存在了实例变量out中。然后,反向 传播时,使用该变量out进行计算。

5.6 Affine/Softmax层的实现

5.6.1 Affine层

神经网络的正向传播中,为了计算加权信号的总和,使用了矩阵的乘 积运算(NumPy中是np.dot(),具体请参照3.3节)。

>>> X = np.random.rand(2) # 输入
>>> W = np.random.rand(2,3) # 权重
>>> B = np.random.rand(3) # 偏置
>>>
>>> X.shape # (2,)
>>> W.shape # (2, 3)
>>> B.shape # (3,)
>>>
>>> Y = np.dot(X, W) + B

在这里插入图片描述

​ 求矩阵的乘积与偏置的和的运算用计算图表示出来。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.6.2 批版本的Affine层

在这里插入图片描述
在这里插入图片描述

>>> X_dot_W = np.array([[0, 0, 0], [10, 10, 10]])
>>> B = np.array([1, 2, 3])
>>>
>>> X_dot_W
array([[ 0, 0, 0],
 [ 10, 10, 10]])

>>> X_dot_W + B
array([[ 1, 2, 3],
 [11, 12, 13]])

正向传播时,偏置会被加到每一个数据(第1个、第2个……)上。因此,

反向传播时,各个数据的反向传播的值需要汇总为偏置的元素。用代码表示 的话,如下所示。

>>> dY = np.array([[1, 2, 3,], [4, 5, 6]])
>>> dY
array([[1, 2, 3],
 [4, 5, 6]])
>>>
>>> dB = np.sum(dY, axis=0)
>>> dB
array([5, 7, 9])

假定数据有2个(N = 2)。偏置的反向传播会对这2个数据 的导数按元素进行求和。因此,这里使用了np.sum()对第0轴(以数据为单 位的轴,axis=0)方向上的元素进行求和。

函数
class Affine:
     def __init__(self, W, b):
         self.W = W
         self.b = b
         self.x = None
         self.dW = None
         self.db = None
        
     def forward(self, x):
         self.x = x
         out = np.dot(x, self.W) + self.b
         return out
        
     def backward(self, dout):
         dx = np.dot(dout, self.W.T)
         self.dW = np.dot(self.x.T, dout)
         self.db = np.sum(dout, axis=0)
         return dx

5.6.3 Softmax-with-Loss 层

前面我们提到过,softmax函数 会将输入值正规化之后再输出。

在这里插入图片描述
在这里插入图片描述

神经网络中进行的处理有推理(inference)和学习两个阶段。神经网络的推理通常不使用 Softmax层。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

再举一个例子,比如思考教师标签是(0, 1, 0),Softmax层的输出是(0.01, 0.99, 0)的情形(这个神经网络识别得相当准确)。此时Softmax层的反向传播 传递的是(0.01, −0.01, 0)这样一个小的误差。这个小的误差也会向前面的层 传播,因为误差很小,所以Softmax层前面的层学到的内容也很“小”。

函数
class SoftmaxWithLoss:
     def __init__(self):
         self.loss = None # 损失
         self.y = None # softmax的输出
         self.t = None # 监督数据(one-hot vector)
        
     def forward(self, x, t):
         self.t = t
         self.y = softmax(x)
         self.loss = cross_entropy_error(self.y, self.t)	#交叉熵误差
         return self.loss
    
     def backward(self, dout=1):
         batch_size = self.t.shape[0]
         dx = (self.y - self.t) / batch_size
         return dx

请注意反向传播时,将要传播 的值除以批的大小(batch_size)后,传递给前面的层的是单个数据的误差

5.7 误差反向传播法的实现

本节我们将通过组装已经实现的层来构建神经网络。

5.7.1 神经网络学习的全貌图

神经网络学习的步骤如下所示
在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-nL5wixVZ-1638173310262)(G:\笔记\深度学习:基于python入门\5\40.png)]

5.7.2 对应误差反向传播法的神经网络的实现

在这里插入图片描述

在这里插入图片描述

类函数
import sys, os
sys.path.append(os.pardir)
import numpy as np
from common.layers import *
from common.gradient import numerical_gradient
from collections import OrderedDict

class TwoLayerNet:
 def __init__(self, input_size, hidden_size, output_size,weight_init_std=0.01):
     # 初始化权重
     self.params = {}
     self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
     self.params['b1'] = np.zeros(hidden_size)
     self.params['W2'] = weight_init_std *  np.random.randn(hidden_size, output_size)
     self.params['b2'] = np.zeros(output_size)
    
    # 生成层
     self.layers = OrderedDict()
     self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])
     self.layers['Relu1'] = Relu()
     self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])
     self.lastLayer = SoftmaxWithLoss()
        
     def predict(self, x):
         for layer in self.layers.values():
         x = layer.forward(x)
         return x
        
     # x:输入数据, t:监督数据
     def loss(self, x, t):
         y = self.predict(x)
         return self.lastLayer.forward(y, t)
        
     def accuracy(self, x, t):
         y = self.predict(x)
         y = np.argmax(y, axis=1)
         if t.ndim != 1 : t = np.argmax(t, axis=1)
         accuracy = np.sum(y == t) / float(x.shape[0])
         return accuracy
        
     # x:输入数据, t:监督数据
     def numerical_gradient(self, x, t):
         loss_W = lambda W: self.loss(x, t)
         grads = {}
         grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
         grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
         grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
         grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
         return grads
    
     def gradient(self, x, t):
         # forward
         self.loss(x, t)
            
         # backward
         dout = 1
         dout = self.lastLayer.backward(dout)
         layers = list(self.layers.values())
         layers.reverse()
         for layer in layers:
         dout = layer.backward(dout)
        
         # 设定
         grads = {}
         grads['W1'] = self.layers['Affine1'].dW
         grads['b1'] = self.layers['Affine1'].db
         grads['W2'] = self.layers['Affine2'].dW
         grads['b2'] = self.layers['Affine2'].db
         return grads

尤其是将神经网络的层保存为 OrderedDict这一点非常重要。

OrderedDict是有序字典,“有序”是指它可以 记住向字典里添加元素的顺序。

因此,神经网络的正向传播只需按照添加元素的顺序调用各层的forward()方法就可以完成处理,而反向传播只需要按 照相反的顺序调用各层即可。因为Affine层和ReLU层的内部会正确处理正 向传播和反向传播,所以这里要做的事情仅仅是以正确的顺序连接各层,再按顺序(或者逆序)调用各层。

像这样通过将神经网络的组成元素以层的方式实现,可以轻松地构建神 经网络。这个用层进行模块化的实现具有很大优点。因为想另外构建一个神 经网络(比如5层、10层、20层……的大的神经网络)时,只需像组装乐高 积木那样添加必要的层就可以了。之后,通过各个层内部实现的正向传播和 反向传播,就可以正确计算进行识别处理或学习所需的梯度。

5.7.3 误差反向传播法的梯度确认

我们介绍了两种求梯度的方法。一种是基于数值微分的方 法,另一种是解析性地求解数学式的方法。后一种方法通过使用误差反向传 播法,即使存在大量的参数,也可以高效地计算梯度。因此,后文将不再使用耗费时间的数值微分,而是使用误差反向传播法求梯度。

数值微分的优点是实现简单,因此,一般情况下不太容易出错。而误差 反向传播法的实现很复杂,容易出错。

所以,经常会比较数值微分的结果和 误差反向传播法的结果,以确认误差反向传播法的实现是否正确。

确认数值 微分求出的梯度结果和误差反向传播法求出的结果是否一致(严格地讲,是 非常相近)的操作称为梯度确认(gradient check)。梯度确认的代码实现如下 所示

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
from dataset.mnist import load_mnist
from two_layer_net import TwoLayerNet

# 读入数据
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True)

network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)

x_batch = x_train[:3]
t_batch = t_train[:3]

grad_numerical = network.numerical_gradient(x_batch, t_batch)
grad_backprop = network.gradient(x_batch, t_batch)

for key in grad_numerical.keys():
    diff = np.average( np.abs(grad_backprop[key] - grad_numerical[key]) )
    print(key + ":" + str(diff))

和以前一样,读入MNIST数据集。然后,使用训练数据的一部分,确认数值微分求出的梯度和误差反向传播法求出的梯度的误差。这里误差的计算方法是求各个权重参数中对应元素的差的绝对值,并计算其平均值。运行 上面的代码后,会输出如下结果

b1:9.70418809871e-13
W2:8.41139039497e-13
b2:1.1945999745e-10
W1:2.2232446644e-13

从这个结果可以看出,通过数值微分和误差反向传播法求出的梯度的差非常小。

这样一来, 我们就知道了通过误差反向传播法求出的梯度是正确的,误差反向传播法的 实现没有错误。

数值微分和误差反向传播法的计算结果之间的误差为 0是很少见的。 这是因为计算机的计算精度有限(比如,32位浮点数)。受到数值精 度的限制,刚才的误差一般不会为 0,但是如果实现正确的话,可 以期待这个误差是一个接近 0的很小的值。如果这个值很大,就说 明误差反向传播法的实现存在错误

5.7.4 使用误差反向传播法的学习

# coding: utf-8
import sys, os
sys.path.append(os.pardir)

import numpy as np
from dataset.mnist import load_mnist
from two_layer_net import TwoLayerNet

# 读入数据
(x_train, t_train), (x_test, t_test) = load_mnist(normalize=True, one_hot_label=True)

network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)

iters_num = 10000
train_size = x_train.shape[0]
batch_size = 100
learning_rate = 0.1

train_loss_list = []
train_acc_list = []
test_acc_list = []

iter_per_epoch = max(train_size / batch_size, 1)

for i in range(iters_num):
    batch_mask = np.random.choice(train_size, batch_size)
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]
    
    # 梯度, 通过误差反向传播法求梯度
    #grad = network.numerical_gradient(x_batch, t_batch)
    grad = network.gradient(x_batch, t_batch)
    
    # 更新
    for key in ('W1', 'b1', 'W2', 'b2'):
        network.params[key] -= learning_rate * grad[key]
    
    loss = network.loss(x_batch, t_batch)
    train_loss_list.append(loss)
    
    if i % iter_per_epoch == 0:
        train_acc = network.accuracy(x_train, t_train)
        test_acc = network.accuracy(x_test, t_test)
        train_acc_list.append(train_acc)
        test_acc_list.append(test_acc)
        print(train_acc, test_acc)

5.8 小结

本章我们介绍了将计算过程可视化的计算图,并使用计算图,介绍了神 经网络中的误差反向传播法,并以层为单位实现了神经网络中的处理。我们 学过的层有ReLU层、Softmax-with-Loss层、Affine层、Softmax层等,这 些层中实现了forward和backward方法,通过将数据正向和反向地传播,可 以高效地计算权重参数的梯度。通过使用层进行模块化,神经网络中可以自 由地组装层,轻松构建出自己喜欢的网络

  • 通过使用计算图,可以直观地把握计算过程。
  • 计算图的节点是由局部计算构成的。局部计算构成全局计算。
  • 计算图的正向传播进行一般的计算。通过计算图的反向传播,可以 计算各个节点的导数。
  • 通过将神经网络的组成元素实现为层,可以高效地计算梯度(反向传播法)。
  • 通过比较数值微分和误差反向传播法的结果,可以确认误差反向传 播法的实现是否正确(梯度确认)。
  • 0
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 深度学习是一种机器学习技术,可以通过模拟人类大脑的神经网络结构来实现智能决策和预测。Python是一种广泛使用的编程语言,也是深度学习中使用最多的语言之一。 如果你想入门深度学习并使用Python进行实现,可以参考一些经典的教材和资源,例如《Python深度学习》(Francois Chollet著)、《深度学习入门:基于Python的理论与实现》(斋藤康毅著)等。这些教材通常会介绍深度学习的基础理论、Python的基本语深度学习框架(如TensorFlow、Keras等)的使用方,同时也会提供一些实例代码和练习题帮助你快速上手。 此外,你也可以通过在线课程和MOOC平台学习深度学习Python编程。例如,Coursera、Udacity和edX等平台都提供了相关课程,可以根据自己的需求和兴趣进行选择。 ### 回答2: 深度学习入门:基于Python的理论与实现,是一本介绍深度学习的较为全面的教程。本书主要介绍了人工神经网络,包括基于反向传播的多层感知器、卷积神经网络、循环神经网络等基本模型以及它们的实现,同时还介绍了一些高级话题,如深度强化学习、生成模型等等。 在本书中,作者通过大量的编程实例来演示深度学习的应用。这些实例包括用深度学习进行手写数字识别、图像分类、语音识别和自然语言处理等任务。由于Python是目前流行的机器学习工具之一,因此这本书的实现过程都使用了Python编程语言。 具体来说,本书的主要内容包括人工神经网络基础知识、多层感知器模型、卷积神经网络模型、循环神经网络模型、生成模型、 强化学习、深度学习框架等方面,同时还包括很多深度学习的应用案例。作者采用了基础理论、数学公式、实例程序和实验数据等不同形式的阐释方,使读者既能够理解深度学习的基本原理,也能够掌握它的实现。 此外,本书还提供了大量的参考文献和网上资源,使读者可以进一步深入学习和研究深度学习。在阅读本书的同时,读者可以根据作者提供的代码和数据,通过实际操作来进一步巩固理论知识和应用技能。 总之,深度学习入门:基于Python的理论与实现是一本非常实用的深度学习教材,可以帮助初学者更好地了解深度学习的基本概念和方,提高实际应用的技能。 ### 回答3: 深度学习是一种人工智能技术,可用于训练计算机识别和理解大量数据。《深度学习入门:基于Python的理论与实现》这本书是入门者学习深度学习的必读之书。以下是本书的内容概述。 本书的第一部分介绍了深度学习的基础概念和理论,包括神经网络、反向传播、损失函数等。介绍了基本的深度学习模型,如前馈神经网络、卷积神经网络和循环神经网络。此外,还介绍了优化算和正则化技术。 在第二部分中,作者使用Python编程语言实现了各种深度学习模型,使用的是许多广泛使用的深度学习框架,如TensorFlow和PyTorch。学习者获得从头开始编写深度学习的经验,同时实际应用中必备的PyTorch和TensorFlow经验。 在第三部分中,本书涵盖了几个应用案例,包括图像分类、语音识别和自然语言处理。幸运的是,这些案例通过代码演示展示,确保即使您没有实际应用经验也能操作成功。 总的来说,《深度学习入门:基于Python的理论与实现》是一本适合想要学习深度学习的初学者的绝佳书籍。其提供了深度学习的基本理论和核心技术,同时应用Python编程语言演示了实现技术。由此学习者可以建立深度学习专业的技术栈和能力,在人工智能领域有更广阔的发展空间。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值