- 博客(104)
- 资源 (1)
- 收藏
- 关注
原创 基于YOLOv8的人流量识别分析系统
【一】项目提供完整源代码及详细注释【二】系统设计思路与实现说明【三】提供完整的部署文档和使用说明,确保您能够轻松上手【四】需要列出所有的类别,并且加入识别的类别数量(人物检测:1类)①:系统环境:MacOS/Windows/Linux均可部署②:开发环境:Python 3.8+ 环境③:技术栈:Django + YOLOv8 + OpenCV + Bootstrap + jQuery + Chart.js①:用户管理:注册登录、个人资料管理、密码修改和找回②:图片检测:上传图片进行人物检测,标记
2025-05-03 13:19:23
1308
原创 基于深度学习的智能交通流量监控与预测系统设计与实现
本系统的实现依赖于多项先进的计算机技术,本章将对其中的关键技术进行介绍,包括计算机视觉基础、深度学习与卷积神经网络、YOLOv8目标检测与跟踪算法、PyQt5图形用户界面框架以及Matplotlib数据可视化库。本文针对现代城市交通管理的迫切需求,结合计算机视觉和深度学习领域的最新进展,成功设计并实现了一个基于YOLOv8的智能交通流量监控与预测系统。在分析现有交通监控技术局限性的基础上,明确了基于深度学习视频分析的优势和系统功能需求。
2025-04-27 20:46:25
905
原创 基于深度学习Yolo8的驾驶员疲劳与分心行为检测系统
③:技术栈:Python、PySide6、OpenCV、YOLOv8、Matplotlib、NumPy。②:开发环境:Python3.8+、PyCharm/VSCode。①:疲劳检测:眨眼频率监测、哈欠检测、Perclos模型评分。②:分心行为识别:手机使用检测、抽烟行为检测、喝水行为检测。④:数据统计:行为数据可视化、疲劳指标统计、数据导出功能。①:系统环境:Windows/Mac/Linux。③:实时监控:摄像头实时画面显示、状态实时更新。【三】疲劳检测模型与行为分析统计。
2025-04-23 10:02:36
311
原创 基于YOLOv8的车辆实时监控与行为分析系统
③:技术栈:Python、PyQt5、OpenCV、YOLOv8、Matplotlib、NumPy、Ultralytics。②:开发环境:Python3.8+、PyCharm/VSCode。①:车辆检测:多类型车辆识别、车辆计数统计、车辆轨迹跟踪。②:速度监测:虚拟测速线设置、实时速度计算、超速行为检测。③:实时监控:视频流实时处理、状态实时更新、多区域监控。④:数据统计:车流量可视化、速度分布统计、数据导出功能。①:系统环境:Windows/Mac/Linux。【三】车辆检测模型与行为分析统计。
2025-04-23 09:59:52
446
原创 基于YOLOv11的超市物品分析系统
【四】识别类别:Alcohol, Candy, Canned Food, Chocolate, Dessert, Dried Food, Dried Fruit, Drink, Gum, Instant Drink, Instant Noodles, Milk, Personal Hygiene, Puffed Food, Seasoner, Stationery, Tissue (共17种类别)②:视频检测:支持选择本地视频文件进行物品识别,显示原始视频与检测结果对比。
2025-04-23 09:56:00
299
原创 基于DeepSeek的文献分析系统
【包含内容】【一】项目提供完整源代码及详细注释【二】系统设计思路与实现说明【三】文献管理、分析与评估的全流程解决方案【技术栈】①:系统环境:Web浏览器环境,支持现代浏览器②:开发环境:Python 3.8+,Django框架③:技术栈:前端(HTML、CSS、JavaScript),后端(Django、SQLite),API集成(DeepSeek大语言模型API),文件处理(python-docx、pdfminer.six、Pillow、pytesseract)【功能模块】
2025-04-22 13:05:58
886
原创 基于深度学习的校园食堂菜品智能结算系统
校园食堂菜品智能结算系统通过深度学习技术与现代化界面设计,实现了菜品的自动识别与结算,为校园食堂提供了一种高效、便捷的结算解决方案。系统不仅提高了结算效率,减少了人工成本,还通过数据统计分析功能,为食堂经营管理提供了决策支持。YOLO模型的训练与优化是系统的核心技术环节,通过精心设计的数据集和训练策略,使模型能够准确识别各种菜品,为系统的智能化提供了坚实基础。随着人工智能技术的不断发展,该系统还有广阔的优化与扩展空间,有望在未来为校园食堂的智能化管理做出更大贡献。
2025-04-22 13:01:26
939
原创 基于机器学习的房租影响因素分析系统
③:技术栈:Django, Pandas, NumPy, Scikit-learn, Plotly, Bootstrap 5, jQuery。④:影响因素分析:使用随机森林算法分析影响租金的主要因素及其重要性。③:地理位置分析:通过热力图展示不同区域的租金分布及地理影响因素。⑤:租金预测功能:根据房屋特征预测租金价格,支持多条件组合预测。②:面积与租金关系:分析房屋面积与租金之间的相关性及趋势。①:租金分布分析:展示不同价格区间的房源数量分布情况。③ 高性能的数据处理机制,支持百万级数据快速分析。
2025-04-22 12:46:00
380
原创 基于大语言模型的减肥健身计划系统设计与实现
【功能模块】 ①:用户管理:个人资料维护、健康数据记录、身体指标管理 ②:AI健身计划:基于大语言模型生成个性化的健身和饮食计划 ③:训练记录:健身打卡记录、运动强度跟踪、卡路里消耗统计 ④:智能对话:与AI教练实时对话,获取专业健身建议和反馈 ⑤:饮食管理:个性化营养建议、每日摄入卡路里计算、膳食安排。【包含内容】 【一】项目提供完整源代码及详细注释 【二】系统设计思路与实现说明 【三】功能演示与部署指南。【拓展服务】 ① 部署+150 ② 如果有数据需要+100。
2025-04-22 12:43:20
361
原创 基于YOLO11与dlib的疲劳驾驶分析系统
②:开发环境:Python 3.8.10、Django 4.2、OpenCV 4.7.0。①:实时检测:通过摄像头实时监测驾驶员状态,发现疲劳驾驶行为时发出警告。②:视频检测:上传视频文件进行分析,检测整个视频中的疲劳行为。③:数据统计:提供历史检测记录和统计图表,帮助分析驾驶习惯。① 多维度疲劳检测,结合眼睛闭合度和打哈欠行为综合评估。⑤:状态评估:基于眼睛闭合度和打哈欠检测评估疲劳程度。④:行为识别:识别抽烟、打电话、喝水等分心驾驶行为。③ 驾驶行为研究和分析工具,用于改进驾驶安全培训。
2025-04-22 11:28:44
1151
2
原创 基于YOLO11的遛狗牵绳识别预警系统
【功能模块】 ①:视频检测模块:支持加载视频文件进行牵引绳识别分析 ②:实时监控模块:支持连接摄像头进行实时检测与预警 ③:参数配置模块:可调整检测阈值和运行参数 ④:数据分析模块:生成检测数据统计图表 ⑤:警报通知模块:自动记录未牵绳情况并发出预警。【技术栈】 ①:系统环境:Windows/Linux/MacOS跨平台 ②:开发环境:Python 3.8+、CUDA 11.0+(推荐) ③:技术栈:YOLO11、PySide6、OpenCV、PyTorch、Ultralytics。0: dog (狗)
2025-04-22 11:19:33
336
原创 基于YOLOv11的106种手语识别分析系统
【功能模块】 ①:实时检测:使用摄像头进行手语实时识别,支持多摄像头选择和结果实时显示 ②:视频检测:支持多种格式视频文件的手语识别,带进度显示和结果保存 ③:图片检测:支持多种图片格式的手语识别,结果可视化和保存 ④:统计分析:记录所有检测历史,包括检测时间、来源、数量和处理时间等 ⑤:数据导出:支持将检测历史记录导出为CSV格式,方便后续分析。
2025-04-22 11:15:20
1177
原创 基于Django的AI客服租车分析系统
本智能租车系统的开发涉及多种技术的综合运用,涵盖了后端开发、前端设计、数据库管理以及人工智能等多个方面。本章将对这些关键技术进行详细介绍。本次系统测试主要采用了黑盒测试方法,覆盖了智能租车系统的用户管理、车辆管理、租赁管理、AI客服等核心功能模块。系统基本实现了需求分析中定义的各项功能,主要业务流程畅通。界面布局基本合理,操作流程相对顺畅,AI客服交互模式新颖。对常见的无效输入和边界条件进行了一定测试,系统表现相对稳定。利用Django内置的安全机制,对基础的Web安全风险有一定防护。
2025-04-20 15:56:26
982
原创 基于蒙特卡洛模拟与时间序列分析的美的集团财务预测模型研究
① 企业财务分析:帮助企业管理层了解财务状况和预测未来发展趋势,为战略决策提供数据支持 ② 投资评估:为投资者提供全面的企业财务分析和未来预测,辅助投资决策 ③ 行业研究:分析特定企业在行业中的表现和竞争力,预测行业发展趋势 ④ 学术研究:为金融、经济学研究提供数据分析工具和方法,支持实证研究。③:技术栈:Pandas、NumPy、Matplotlib、Seaborn、SciPy、Statsmodels、Scikit-learn。⑤:综合报告生成:自动生成详细的财务分析报告,包含关键发现和战略建议。
2025-04-20 11:11:05
468
原创 基于YOLOv8与Django框架的智能交通标志识别系统
本系统的开发涉及多项关键技术,涵盖了后端开发、深度学习、计算机视觉以及前端展现等多个方面。本章将对这些核心技术进行详细介绍。本项目成功设计并实现了一个基于 YOLOv8 目标检测算法和 Django Web 框架的智能交通标志识别系统。搭建了完整的 Web 应用系统,集成了用户管理、多模式交通标志检测(图片、视频、实时)、历史记录管理和管理员后台等功能模块。利用库集成了先进的 YOLOv8 模型,并结合 OpenCV 实现了对图像、视频和实时摄像头的交通标志检测与识别逻辑,包括边界框绘制和中文标签显示。
2025-04-20 10:59:23
1640
原创 基于骨骼识别的危险动作报警分析系统
【功能模块】 ①:视频采集模块:获取摄像头实时视频流,支持多摄像头选择与切换,计算实时帧率 ②:骨骼检测模块:基于Mediapipe Pose模型实时识别人体33个关键骨骼点,提供坐标和可见性数据 ③:危险判断模块:支持危险区域入侵检测和多种危险动作识别(弯腰、举手、失衡、蹲下、奔跑) ④:音频警报模块:本地化生成多种差异化警告音效(蜂鸣声、警笛声、扫频声、啁啾声),多音频后端兼容 ⑤:交互界面模块:基于PySide6构建直观友好的操作界面,支持实时监控显示和交互式危险区域绘制。
2025-04-16 21:39:00
339
原创 基于YOLOV11的道路坑洼分析系统
【功能模块】 ①:图像检测模块:支持单张图片上传检测,自动标注坑洼位置及置信度 ②:视频检测模块:支持视频文件检测,实时标注并记录坑洼位置信息 ③:实时摄像头检测:连接摄像头进行实时坑洼检测,适用于车载系统 ④:数据统计分析:多维度统计检测结果,提供饼图、柱状图、趋势图可视化 ⑤:参数配置模块:支持调整置信度阈值,优化检测灵敏度与准确性。【拓展服务】 ① 部署+150:提供系统部署服务,包括环境配置、模型优化与系统调试 ② 如果有数据需要+100:提供针对特定道路环境的模型微调与优化服务。
2025-04-16 21:23:08
332
原创 基于YOLO11的跌倒检测报警系统
【功能模块】 ①:视频检测:支持加载本地视频文件进行跌倒检测,自动标记跌倒事件并发出警报 ②:摄像头检测:支持实时调用摄像头进行跌倒监测,检测到跌倒立即报警 ③:图片检测:支持对静态图片进行跌倒检测分析,可批量处理多张图片 ④:报警管理:提供声音报警、视觉提示等多种报警方式,支持自定义报警声音 ⑤:系统设置:提供丰富的配置选项,包括检测阈值、报警参数和存储设置等。【包含内容】 【一】项目提供完整源代码及详细注释 【二】系统设计思路与实现说明 【三】完整的视频/摄像头/图片检测与报警功能。
2025-04-16 21:21:32
435
原创 基于YOLO11的车牌识别分析系统
③:技术栈:YOLO11 + PaddleOCR + PySide6 + OpenCV + Pandas。①:图片识别:支持批量上传图片进行车牌识别,显示车牌位置及文本信息。③:实时检测:连接摄像头实时捕捉画面进行车牌检测,支持多摄像头切换。②:视频识别:加载视频文件,逐帧分析识别车牌,并保存结果数据。④:数据统计:对识别结果进行车型、时间、区域等多维度统计分析。⑤:结果导出:支持识别结果导出为CSV、图片等多种格式。① 高精度检测与识别算法,适应复杂环境与角度。②:开发环境:Python 3.8+
2025-04-16 21:18:38
684
原创 基于机器学习的高考志愿填报推荐分析系统
①:系统环境:Python 3.8+,支持跨平台(Windows/MacOS/Linux)③:技术栈:Django + XGBoost + 协同过滤 + Bootstrap 4。② 协同过滤推荐算法:基于相似用户的选择模式,提供个性化推荐。①:用户管理模块:注册、登录、个人信息管理,支持头像上传。③:院校推荐模块:基于分数、地区、批次的多因素推荐算法。⑤:结果展示模块:可视化推荐结果,支持多种排序和筛选。②:问卷系统模块:兴趣倾向问卷调查,科目特长分析。④:数据分析模块:历史数据分析,录取概率计算。
2025-03-30 16:18:51
331
3
原创 基于YOLO11的违禁物品检测分析系统
【功能模块】 ①:图像检测模块:支持单张图片和批量图片的违禁物品检测,实时显示检测结果和详细信息 ②:历史记录模块:以卡片式布局展示历史检测记录,支持按时间筛选和详情查看 ③:系统设置模块:可调整检测置信度阈值和选择需要检测的物品类别 ④:用户管理模块:支持用户登录、密码修改和权限控制 ⑤:数据管理模块:支持数据库备份、清理和历史记录管理。【包含内容】 【一】项目提供完整源代码及详细注释 【二】系统设计思路与实现说明 【三】完整的用户手册与部署文档。
2025-03-30 16:17:17
313
原创 基于Django的巴马水晶宫旅游管理系统
③:技术栈:Django + Bootstrap 5 + SQLite/MySQL + Pillow。②:开发环境:Python 3.8+, Django 4.2, SQLite/MySQL。③:订单管理:创建订单、支付处理、订单状态跟踪、取消订单。⑤:数据统计:销售数据统计、图表展示、用户消费记录分析。②:用户系统:用户注册、登录、个人资料管理及权限控制。①:产品管理:旅游产品的分类、标签、价格、详情管理。④:反馈系统:用户反馈提交、评价管理、管理员回复。【三】提供完整的数据模型、视图实现及前端模板。
2025-03-30 16:15:45
618
原创 基于Flask的跨境电商头程预警分析系统
【功能模块】 ①:用户认证与权限管理:用户注册登录、管理员权限控制、个人资料管理 ②:物流商管理:物流商基本信息、发货地区和收费标准管理 ③:订单管理系统:发货单创建、商品添加、物流状态追踪、成本自动核算 ④:预警信息系统:多级别预警创建、解决方案记录、预警统计和筛选 ⑤:数据可视化:仪表盘统计、订单状态分布图表、未处理预警数量统计。【包含内容】 【一】项目提供完整源代码及详细注释 【二】系统设计思路与实现说明 【三】数据库设计文档与系统使用说明。
2025-03-30 16:12:30
619
原创 基于yolo11的水稻病虫害智能分析系统
【功能模块】 ①:单张图片检测:上传单张图片进行病虫害检测,显示检测结果和详细信息 ②:批量图片检测:选择文件夹进行批量检测,生成汇总报告和详细分析 ③:视频检测:对视频进行实时病虫害检测,支持播放、暂停和保存检测结果 ④:结果可视化:直观展示检测框、类别标签和置信度,使用不同颜色区分病虫害类型 ⑤:结果导出:支持将检测结果保存为图片和文本文件,便于后续分析和报告生成。【包含内容】 【一】项目提供完整源代码及详细注释 【二】系统设计思路与实现说明 【三】基于YOLO模型的水稻病虫害检测与分析功能。
2025-03-30 16:11:03
441
原创 基于深度学习的中文文本情感分析系统
本文设计并实现了一个基于深度学习的中文文本情感分析系统。该系统采用PyTorch框架和TextCNN模型,能够对中文文本进行四分类情感识别(愤怒、悲伤、喜悦、惊讶)和二分类强度判断(强烈、轻微)。系统提供了单文本分析、批量分析、历史记录管理、数据可视化和情感词典管理等功能,为用户提供了全面的情感分析服务。实验结果表明,该系统在中文情感分析任务上取得了良好的性能,具有较高的准确率和实用价值。
2025-03-10 18:52:37
2565
2
原创 基于用户所在城市人均支出GDP的汽车推荐系统
本文设计并实现了一个基于用户所在城市人均支出GDP的汽车推荐系统。该系统通过分析用户所在城市的经济发展水平、用户个人偏好以及汽车市场数据,为用户提供个性化的汽车推荐服务。系统采用Django框架开发,结合多种推荐算法,包括基于内容的推荐、协同过滤和聚类分析,实现了高精度的汽车推荐功能。实验结果表明,该系统能够有效提高用户选车效率,并提供符合用户经济能力和个人需求的推荐结果。关键词:汽车推荐系统、人均GDP、个性化推荐、Django、机器学习。
2025-03-10 11:56:54
1045
原创 深度学习transfomer架构的职业匹配系统
这是一款基于深度学习技术开发的职业匹配系统,能够根据您的个人信息、技能和期望,智能匹配最适合您的职位。系统采用PyQt5开发,界面美观大方,操作简单直观。
2025-03-03 11:17:33
324
原创 JAVA高级(三)——多线程(1)
JAVA高级(三)--多线程(1)概述为什么要多线程呢?如何实现多线程呢?继承Thread类实现Runable接口实现Runnable接口的调用过程如何使用线程呢?解决由于共享变量造成的安全问题currentThread()方法isAlive()方法sleep(long millis)方法停止线程interrupt()停止线程判断线程是否停止状态异常法停止线程在sleep下停止线程使用暴力法stop()停止线程使用return ;停止线程概述为什么要多线程呢?多线程能够让数据同时进行处理,比如原来一
2021-11-20 11:17:14
1266
1
原创 JAVA高级(二)——Optional
JAVA高级(二)——Optional一、概述二、为何要避免null指针2.1 使用if-else三、使用Optional优化null判断3.1 Optional 入门3.1.1 使用Optional优化Car类3.1.2 Optional的几种模式3.1.3 使用map从Optional中提取值3.1.4 使用flatMap链接Optional对象3.1.4.1 使用Optional获取car的保险公司名称3.1.4.2 使用Optional解引用串接的Person/Car/Insurance对象3.1.
2021-11-17 19:01:45
1664
1
原创 JAVA高级(一)——lambda
JAVA高级(一)——lambdalambda基础1、是什么是函数是接口?2、lambda的特点3、在哪里以及如何使用Lambdalambda实现:环绕执行模式1、行为参数化2、使用函数时接口传递行为3、执行一个行为并转为lambda使用函数式接口1、常用的函数型接口2、重构使用lambda的问题2.1 重构lambda找不到情况2.2 从lambda表达式到方法引用的转换3、使用lambda重构设计模式3.1 重构策略模式3.2 模板方法lambda基础1、是什么是函数是接口?函数式接口(Func
2021-11-16 18:47:06
3483
4
原创 【数据结构(五)】树----01-ADT二叉树
【数据结构(五)】树----ADT二叉树1、二叉树##1.1 特征优点二叉树的平均深度是O(log N),一般不用担心栈空间被用尽;要求所有的项都可以进行排序,所以需要实现一个Comparable接口;使用的是递归的方式进行数据的查找/删除/增加/修改;缺点如果数据量过于庞大,会导致二叉树的深度过深,导致效率会急剧低下;如果使用删除操作会使树节点位置进行改变,操作复杂(解决是使用删除标识符);代码如下:package com.xiao.java_base.btree;
2021-10-10 13:33:00
506
原创 【数据结构(四)】一一一一队列BFS、DFS
文章目录【数据结构(四)】队列BFS、DFS:question: 题目--岛屿数量:one: DFS(深度优先搜索):relaxed: 题解:minidisc: 思路:[引用解题思路](https://leetcode-cn.com/problems/number-of-islands/solution/number-of-islands-shen-du-you-xian-bian-li-dfs-or-/):eagle: DFS题解:two: BFS (广度优先搜索):relaxed: 题解:minidis
2021-08-08 17:45:23
607
原创 【数据结构(三)】一一一一循环队列
数据结构----队列:water_buffalo: 队列1、队列简介2、队列的实现2.1 :low_brightness: 缺点2.2 :dancer:循环队列3、队列的用法???? 队列1、队列简介在 FIFO 数据结构中,将首先处理添加到队列中的第一个元素。如上图所示,队列是典型的 FIFO 数据结构。插入(insert)操作也称作入队(enqueue),新元素始终被添加在队列的末尾。 删除(delete)操作也被称为出队(dequeue)。 你只能移除第一个元素。2、队列的实现为了实
2021-08-07 21:25:17
325
1
原创 【数据结构(二)】一一一一双向链表
【数据结构之链表(二)】一一一一双向链表【数据结构之链表(二)】一一一一双向链表1、:first_quarter_moon:前言2、:orange: 为什么有了`单向链`表还要使用`双向链表`呢?2、:banana: 双向链表对比单向链表的优缺点如何呢?一、指代不同二、优点不同三、缺点不同3、:tomato: 双向链表是怎么实现的呢?【数据结构之链表(二)】一一一一双向链表1、????前言首先抛出几个问题,这也是本文双向链表的思路脉络:[1️⃣ 为什么有了单向链表还要使用双向链表呢?](#2、??
2021-07-31 14:32:01
591
原创 【数据结构链表(一)】一一一一单向链表
【数据结构链表(一)】一一一一单向链表1、:apple: 什么是单向链表2、:banana: 概念3、:orange: 链表特点4、:jack_o_lantern: 单向链表的实现原理4.1 :first_quarter_moon_with_face: 单向链表的实现类4.2 :b: 如何自己实现链表4.2.1 :one: 创建一个节点类4.2.2 :two: 创建链表类【数据结构链表(一)】一一一一单向链表1、???? 什么是单向链表 链表包含单链表,双向链表,循环链表等等。相对于线性表,添加,删
2021-07-29 22:55:24
508
1
原创 【Java设计模式】一一一一工厂方法模式
工厂方法模式为不同的业务逻辑注入不同的bean所谓的工厂方法模式,就是定义一个工厂方法,通过传入的参数,返回某个实例,然后通过该实例来处理后续的业务逻辑。一般的,工厂方法的返回值类型是一个接口类型,而选择具体子类实例的逻辑则封装到了工厂方法中了。通过这种方式,来将外层调用逻辑与具体的子类的获取逻辑进行分离。如下图展示了工厂方法模式的一个示意图:可以看到,工厂方法将具体实例的选择进行了封装,而客户端,也就是我们的调用方只需要调用工厂的具体方法获取到具体的事例即可,而不需要管具体的实例实现是什么。
2021-07-27 10:33:15
363
原创 【Java设计模式】一一一一策略模式
策略模式策略模式策略模式一个接口被多个类进行实现,遇到不同的情况有不同的类去处理(也就是策略)基本类public interface PrizeSender { /** \* 用于判断当前实例是否支持当前奖励的发放 */ boolean support (SendPrizeRequest request); /** \* 发放奖励 */ void sendPrize (SendPrizeRequest request);}实现类1// 积分发放@Compo
2021-07-27 10:32:08
260
原创 【Java设计模式】一一一一简单工厂模式(创建型)
简单工厂(Simple Factory)1、说明工厂定义:在创建一个对象时不向客户暴露内部细节,并提供一个创建对象的通用接口。简单工厂把实例化的操作单独放到一个类中,这个类就成为简单工厂类,让简单工厂类来决定应该用哪个具体子类来实例化。这样做能把客户类和具体子类的实现解耦,客户类不再需要知道有哪些子类以及应当实例化哪个子类。客户类往往有多个,如果不使用简单工厂,那么所有的客户类都要知道所有子类的细节。而且一旦子类发生改变,例如增加子类,那么所有的客户类都要进行修改。2、实现图2、优点和缺点
2021-07-27 10:18:28
258
JDBCtemplate封装类的jar包.zip
2020-03-28
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人