基于YOLOv11的超市物品分析系统
【包含内容】
【一】项目提供完整源代码及详细注释
【二】系统设计思路与实现说明
【三】智能检测与统计分析报告
【四】识别类别:Alcohol, Candy, Canned Food, Chocolate, Dessert, Dried Food, Dried Fruit, Drink, Gum, Instant Drink, Instant Noodles, Milk, Personal Hygiene, Puffed Food, Seasoner, Stationery, Tissue (共17种类别)
【技术栈】
①:系统环境:Windows/macOS/Linux跨平台支持
②:开发环境:Python 3.8+, CUDA加速支持
③:技术栈:YOLOv11, PySide6, OpenCV, PyTorch, Pillow, NumPy
【功能模块】
①:图像检测:支持选择本地图片进行物品识别,显示检测结果和统计信息
②:视频检测:支持选择本地视频文件进行物品识别,显示原始视频与检测结果对比
③:实时检测:支持摄像头实时画面检测,可选择多种摄像头设备
④:统计分析:以卡片式+图标方式展示检测结果,支持上拉扩展查看更多数据
⑤:交互界面:未来感科技风UI,支持拖拽分割线调整显示区域大小
【系统特点】
① 跨平台兼容,自动适应不同操作系统环境与中文字体渲染
② 全息科技风界面设计,苍白银色与变幻蓝紫色调结合,视觉冲击力强
③ 精心设计的卡片式统计功能,带有图标直观展示检测结果
④ 多线程视频处理,保证UI响应流畅性与实时监测的高效性
【核心技术】
① 基于YOLOv11的超市物品目标检测算法,提供高精度识别能力
② 多线程视频处理技术,保证实时检测流畅性
③ 跨平台字体渲染技术,自动适应不同系统环境
④ QSplitter分割面板交互技术,实现拖拽调整区域大小
【应用场景】
① 超市商品盘点与管理,快速统计商品数量和种类
② 零售店铺商品陈列分析,优化商品布局
③ 仓库库存管理,自动化盘点减少人力成本
④ 商品研究与分析,了解商品组合与搭配模式
训练结果: