基于YOLOv11的手语识别分析系统
【包含内容】 【一】项目提供完整源代码及详细注释 【二】系统设计思路与实现说明 【三】多平台适配优化,支持Windows、macOS和Linux系统,确保中文字体正常渲染 【四】识别的类别数量:106种,具体类别包括:'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'additional', 'alcohol', 'allergy', 'bacon', 'bag', 'barbecue', 'bill', 'biscuit', 'bitter', 'bread', 'burger', 'bye', 'cake', 'cash', 'cheese', 'chicken', 'coke', 'cold', 'cost', 'coupon', 'credit card', 'cup', 'dessert', 'drink', 'drive', 'eat', 'eggs', 'enjoy', 'fork', 'french fries', 'fresh', 'hello', 'hot', 'icecream', 'ingredients', 'juicy', 'ketchup', 'lactose', 'lettuce', 'lid', 'manager', 'menu', 'milk', 'mustard', 'napkin', 'no', 'order', 'pepper', 'pickle', 'pizza', 'please', 'ready', 'receipt', 'refill', 'repeat', 'safe', 'salt', 'sandwich', 'sauce', 'small', 'soda', 'sorry', 'spicy', 'spoon', 'straw', 'sugar', 'sweet', 'thank-you', 'tissues', 'tomato', 'total', 'urgent', 'vegetables', 'wait', 'warm', 'water', 'what', 'would', 'yoghurt', 'your'
【技术栈】 ①:系统环境:Windows 10/11、macOS 10.15+、Ubuntu 20.04+ ②:开发环境:Python 3.8+、CUDA 11.0+(可选,用于GPU加速) ③:技术栈:PySide6、OpenCV、PyTorch、Ultralytics YOLOv11、NumPy、Pandas、Matplotlib
【功能模块】 ①:实时检测:使用摄像头进行手语实时识别,支持多摄像头选择和结果实时显示 ②:视频检测:支持多种格式视频文件的手语识别,带进度显示和结果保存 ③:图片检测:支持多种图片格式的手语识别,结果可视化和保存 ④:统计分析:记录所有检测历史,包括检测时间、来源、数量和处理时间等 ⑤:数据导出:支持将检测历史记录导出为CSV格式,方便后续分析
【系统特点】 ① 现代化UI界面,采用蓝色渐变主题,符合现代设计审美 ② 多线程处理,保证UI响应流畅,检测过程不卡顿 ③ 跨平台兼容,支持Windows、macOS和Linux,确保中文正常显示 ④ 可视化结果展示,直观显示检测到的手语手势及置信度
【核心技术】 ① 基于YOLOv11的目标检测算法,实现高精度手语手势识别 ② 多线程处理框架,分离UI和计算任务,确保系统响应流畅 ③ PySide6现代GUI开发,提供美观且功能完善的用户界面 ④ 多平台字体适配技术,确保中文在不同系统下正常显示
【应用场景】 ① 手语教学辅助:帮助手语学习者验证自己的手势是否正确 ② 无声交流辅助:帮助听障人士与普通人进行有效沟通 ③ 公共服务场所:在银行、医院等场所辅助听障人士获取服务 ④ 教育研究:用于手语教学研究和语言学分析