神经网络
weixin_44956186
这个作者很懒,什么都没留下…
展开
-
神经网络设计(10)——性能曲面和最优点
本次介绍的是一类称为性能学习的神经网络训练的基础知识。神经网咯有几种不同的类型的学习规则,如联想学习和竞争学习。性能学习是另一类重要的学习规则,其目的在于调整网络参数以优化网络性能。性能学习 有几种不同的学习规则可以归类于性能学习,我学习其中两种,他们两个最大的区别在于训练网络时为优化网络而调整网络参数的方法不同。性能训练这种优化分两个步骤进行。第一步是定义“性能”的含义。换言之,需要找到一个...原创 2019-12-15 17:40:23 · 402 阅读 · 0 评论 -
神经网络设计学习笔记(10)——有监督的Hebb学习(4)
有监督的Hebb学习小结线性联想器由于首次讨论Hebb学习而采用的较为简单的结构 如图:Hebb规则如图仿逆规则减少Hebb规则误差的一种方法。如图所示参考文献[1] Hagan M , Hagan, 戴葵. 神经网络设计[M]. 机械工业出版社, 2002....原创 2019-12-09 00:25:08 · 330 阅读 · 0 评论 -
神经网络设计学习笔记(10)——有监督的Hebb学习(4)
自联想存储器现在将Hebb规则应用用于一个大大简化了实际模式识别问题。在这里 期望输出量等于网络的输入向量。这里将用自联想存储器存储一组模式,并且当其输入模式有所“破损”时,他仍然能够将其复原。这里要存储的模式如下图,这里要把这些数字转换为向量表示形式,分别作为网络的原型模式。如果白色格子用-1表示,黑色用1表示,那么扫描栅格中的一列就可以生成这些输入向量。向量P1,P2.P3分别与数字0...原创 2019-12-01 16:43:07 · 1004 阅读 · 0 评论 -
神经网络设计学习笔记(10)——有监督的Hebb学习(3)
仿逆规则之前我们提到的样本输入模式都是正交的,否则Hebb规则会产生误差。为了解决这种误差,大能们就研究出一个东西叫仿逆规则。线性联想器的任务是对于输入Pq产生输出tq,即Wpq=tq,q=1,2 …,Q(1)如果无法找到使这些等式绝对成立的全职矩阵,那么也希望找到使它们近似成立的权值矩阵。一种方法是:选取一个全职矩阵,使下列性能参数最小化:如果样本输入向量Pq是标准正交的,那么用He...原创 2019-11-25 00:48:44 · 770 阅读 · 0 评论 -
神经网络设计学习笔记(10)——有监督的Hebb学习(2)
Hebb规则为了将Hebb假设用于训练线性联想器的权值矩阵,那么又如何给出Hebb假设的数学解释呢?首先,再次重述下该假设: 若一条突触两侧的两个神 径元同时被激活,那么突触的强度将会增大。在上式中,输入和输出之间的连接(突触)是权值。所以Hebb假设意味着:如果一个正的输入产生一个正的输出,那么应该增加权值的值。数学解释:请注意:这里严格解释的基础上扩展了Hebb假设,权值的变化与突触每...原创 2019-11-17 20:42:50 · 525 阅读 · 0 评论 -
神经网络设计学习笔记(10)——有监督的Hebb学习
Hebb规则是最早的神经网络学习规则之一,由Donald Hebb在1949年作为大脑的一种神经元突出调整的可能机制而提出,从那以后Hebb规则就一直用于人工神经网络的训练。Hebb假设“当细胞A的轴突到细胞B的距离近到足够激励它,且反复地成持续地刺激B,那么在这两个细胞或一个细胞中将会发生某种增长过程或代谢反应,增加A对细胞B的刺激效果。”线性联想器Hebb学习规则能用于和多种神经网络结...原创 2019-11-17 20:13:23 · 1433 阅读 · 0 评论 -
神经网络设计学习笔记(9)——神经网络中的线性变换(2)
再上一次的博客中说过的,矩阵相乘是线性变换的一个实例。同样,可以证明两个有限维向量空间之间的任何线性变化都可以用一个矩阵来表示。设{v1,v2,v3,v4 。。。。vn},{u1,u2,u3,。。。um}分别是X,Y的基。即是对任意两个向量x∈X和y∈Y,有A是一个定义域为X值域为Y的线性变换(A:X→Y)ps:注意下式中的aij不是随意选取的一顿疯狂整理,可以得出:因为所有的Ui...原创 2019-11-03 23:18:06 · 690 阅读 · 0 评论 -
神经网络学习笔记(9)——神经网络中的线性变换
在上次的学习笔记中说到,线性代数是神经网络所需要的的数学基础,而且上次复习了线性空间相关知识,本章将探讨在神经网络中的线性变换。 在之前的学习笔记中说到的输入向量与权值矩阵相乘是执行神经网络的重要操作,该操作就是线性变换的一个具体实例。1.线性变换首先定义变换的概念。变换 一个变换有三个部分(1)一个被称为定义域的元素集合X={xi};(2)一个被称为值域的元素集合Y={yi}...原创 2019-10-27 21:30:42 · 1589 阅读 · 0 评论 -
神经网络学习笔记(8)——信号和权值向量空间(1)
本次博客为复习线行代数知识,因为线性代数是理解神经网络必修学科。1.线性向量空间在我个人看来他就是满足一定的式子的抽象概念,具体如下:****设V是一个非空集合,P是一个域。若:1.在V中定义了一种运算,称为加法,即对V中任意两个元素α与β都按某一法则对应于V内惟一确定的一个元素α+β,称为α与β的和。2.在P与V的元素间定义了一种运算,称为纯量乘法(亦称数量乘法),即对V中任意元素α和...原创 2019-10-20 22:38:47 · 840 阅读 · 0 评论 -
神经网络设计学习笔记(7)——感知机学习规则(5)
上次博客总结了三条规则,这次接上回的博客继续阐述。统一的学习规则上次博客总结的三个规则可以总结为一个表达式。(上图)首先将感知机的误差定义为一个新的变量e:e=t-a现在可将式中三条规则重写:仔细观察可以发现上边的前两条规则,可以发现p的符号和误差e的符号一致。在第三条规则中,由于e=0,所以p没有出现。综上可以将上边的三条规则总结为一个表达式;此规则可以扩展到偏置值的训练过程中:...原创 2019-10-06 09:47:55 · 236 阅读 · 0 评论 -
神经网络设计学习笔记(7)——感知机学习规则(4)
本次博客接上次的博客,继续阐述感知机的学习规则。在学习规则彻底学习结束,将用MATLAB进行简单实践。#学习规则的构造为了完成上次博客所提到的测试问题,需要对学习规则进行构造,在训练开始时,为网络的参数赋予一些初始值。这里仅需对其两个权值进行初始化。然后将输入向量提供给网络。 但是网络没有返回正确的值。从图中可以i看出判定边界的权值向量导致了对向量P1的错误分类的判定边界。...原创 2019-09-29 23:13:59 · 249 阅读 · 0 评论 -
神经网络设计学习笔记(7)——感知机学习规则(3)
前两次关于感知机学习规则方面的知识做了充足的铺垫,介绍了何为学习规则,对感知机进行了进一步的介绍。本次博客将真正的学习感知机学习规则。1.感知机学习规则由于其学习规则是有监督训练的实例,所以这里学习规则将提供一组能正确反应网络行为的实例:{P1,T1},{P2,T2},…{Pq,Tq}。其中Pq是网络的输入,Tq是网络的目标输出。当每个输入作用到网络上时,网络的实际输出与目标比较。然后学习规...原创 2019-09-22 23:03:15 · 459 阅读 · 0 评论 -
神经网络设计学习笔记(6)——感知机学习规则(2)
上篇文章对学习规则,感知机结构做了简单介绍,本次将继续介绍感知机学习规则。1.单神经元感知机如图,是两个输入的单神经元感知机。该网络输出由下式决定:a=hardlim(n)=hardlim(Wp+b)判定边界有那些使得净输入n为0的输入向量决定。可以设权值和偏置值为:W(1,1)P1=1,W(1,2)P2=1,b=-1.所以n=P1+P2-1.上式在输入空间中定义了一条直线。直线一侧...原创 2019-09-15 23:22:50 · 382 阅读 · 0 评论 -
神经网络设计学习笔记(4)——利用Hamming网络对水果进行分类(1)
在上一次博客已经简要阐述前馈网络(感知机)对水果的分类,这次学习Hamming网络,并用其对水果进行分类。依旧是分类苹果橘子的案例,工作流程如图,本次利用Hamming网络解决此问题,所以三个传感器的输出输入到Hamming神经网络。然后网络输出水果的类型,接着把不同类型的水果分别送到相应的储存仓内。就完成了对水果的分类。1.Hamming网络简介Hamming网络是专门为求解二值(问题中...原创 2019-09-01 23:40:29 · 721 阅读 · 0 评论 -
神经网络设计(3)—— 利用前馈网络对水果进行分类
在一条传送带上,有苹果和橘子 如何将他们利用神经网络进行分类,就是本次博客的内容,一共有三种网络,本次介绍前馈网络来处理这件事情。1.问题简述在运送水果的传送带上,有有一组感应器,可以测量水果的 外形,质地,重量。如果是圆形 传感器输出就是1 椭圆就是-1 以此类推表面光滑为1 粗糙为-1重量超过1磅 输出1 少于1磅 输出-1依此,每个水果都可以与如下三维向量来表示外形p=(质地...原创 2019-08-25 23:56:44 · 764 阅读 · 0 评论 -
神经网络设计学习笔记(2)——网络结构
在实际应用中,单个神经元根本做不了太多的事情,就算输入值有很多,也无济于事,只有团队再能发挥大作用,个人能力再强也没用。所以在实际中需要多个并行操作的的神经元,将并行操作的神经元的集合称为“层”。1.神经元的层下图就是由s个神经元组成的单层神经网络。R个输入中每一个均与每个神经元相连,而且权值矩阵有s行。输入向量通过如下权值矩阵进入网络:W(1.1) W(1.2) … ...原创 2019-08-18 19:19:28 · 212 阅读 · 0 评论 -
神经网络设计学习笔记(1)——神经元模型
利用一些简单的人工“神经元”构造一个小系统,然后对其进行训练,从而具备一定的功能,正是人类研究人工神经网络的出发点,我们在这里考虑的神经元不是生物神经元,他们是对生物神经元极其简单的抽象,可以用程序或硅电路实现的人工神经元。现在就对人工神经元的一些基础模型进行阐述。**神经元模型**神经元模型可以间的的分为单输入神经元和多输入神经元。1.单输入神经元如下图,为最基础的单输入神经元,需要...原创 2019-08-18 18:41:38 · 789 阅读 · 0 评论