神经网络学习笔记(9)——神经网络中的线性变换

在上次的学习笔记中说到,线性代数是神经网络所需要的的数学基础,而且上次复习了线性空间相关知识,本章将探讨在神经网络中的线性变换。 在之前的学习笔记中说到的输入向量与权值矩阵相乘是执行神经网络的重要操作,该操作就是线性变换的一个具体实例。

1.线性变换
首先定义变换的概念。
变换 一个变换有三个部分
(1)一个被称为定义域的元素集合X={xi};
(2)一个被称为值域的元素集合Y={yi};
(3)一个将每个xi∈X和一个元素yi∈Y相联系的规则;
线性变换 一个变换A是线性的,如果
(1)对所有的x1,x2∈X,A(x1+x2)=A(x1)+A(x2);
(2)对所有的x∈X和a∈R,A(ax)=aA(x)
假设某个变换A是二维空间中将一个向量旋转θ角度(如图1所示)图2.3 表示该旋转变换满足线性变换定义中的条件1, 图4 表示旋转变换满足线性变换定义中的条件2.由此可以看出,旋转变换是一个线性变化。
图1
图一
在这里插入图片描述
图二
在这里插入图片描述
图三
在这里插入图片描述
图四

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值