DAY17 二叉树part5

654. 最大二叉树

中等

给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建:

  1. 创建一个根节点,其值为 nums 中的最大值。
  2. 递归地在最大值 左边 的 子数组前缀上 构建左子树。
  3. 递归地在最大值 右边 的 子数组后缀上 构建右子树。

返回 nums 构建的 最大二叉树 

前序中序、中序后序构造树很类似。构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
        index = {x: i for i, x in enumerate(nums)} # x = num[i] i是索引,x是值
        def dfs(nums_l, nums_r):
            if nums_r < nums_l:
                return None
            root = max(nums[nums_l:nums_r + 1]) 
            # 最大值,切片语法是左闭右开要+1
            leftsize = index[root] - nums_l
            left = dfs(nums_l, nums_l + leftsize-1) # dfs右闭要-1
            right = dfs(nums_l + leftsize + 1, nums_r)
            return TreeNode(root, left, right)
        return dfs(0, len(nums) - 1)

617. 合并二叉树 

简单

给你两棵二叉树: root1 和 root2 。

想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。

返回合并后的二叉树。

注意: 合并过程必须从两个树的根节点开始。

 

 递归三部曲:

1、参数和返回值:参数是两个二叉树的根节点,返回值就是合并之后二叉树的根节点。

2、确定终止条件:有结点为空时,分情况讨论

3、单层递归的逻辑(此时都不为空):中(处理)左(递归)右(递归)

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
        # 终止条件
        if root1 is None and root2 is None: #根节点都为空
            return None
        if root2 is None and root1 is not None:#root2空,返回root1
            return root1
        if root1 is None and root2 is not None:
            return root2
        # 都不为空
        # 中
        merged = TreeNode(root1.val+root2.val)#创建一个新的树节点 merged,其值为 t1 和 t2 的节点值之和。
        # 左
        merged.left = self.mergeTrees(root1.left, root2.left)
        # 右
        merged.right = self.mergeTrees(root1.right, root2.right)
        return merged #最后,返回合并后的新树 merged 的根节点。

700. 二叉搜索树中的搜索 

简单

给定二叉搜索树(BST)的根节点 root 和一个整数值 val

你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。

递归 

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
        if root is None:
            return None
        else:
            if root.val == val:
                return root
            elif root.val > val:
                return self.searchBST(root.left, val)
            else:
                return self.searchBST(root.right, val)
        return None

迭代(栈)

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
        stack = [root]
        while stack:
            node = stack.pop()
            if node is None:
                continue
            if node.val == val:
                return node
            elif node.val > val:
                stack.append(node.left)
            else:
                stack.append(node.right)
        return None
        
        

迭代 

class Solution:
    def searchBST(self, root: TreeNode, val: int) -> TreeNode:
        while root:
            if val < root.val: root = root.left
            elif val > root.val: root = root.right
            else: return root
        return None

98. 验证二叉搜索树 

中等

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左

    子树

    只包含 小于 当前节点的数。
  • 节点的右子树只包含 大于 当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

递归(判断递增序列) 

利用中序递增性质,转换成数组,看是否递增 

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def __init__(self):
        self.vec = []

    def traversal(self, root):
        if root is None:
            return
        self.traversal(root.left)
        self.vec.append(root.val)  # 将二叉搜索树转换为有序数组
        self.traversal(root.right)

    def isValidBST(self, root):
        self.vec = []  # 清空数组
        self.traversal(root)
        for i in range(1, len(self.vec)):
            # 注意要小于等于,搜索树里不能有相同元素
            if self.vec[i] <= self.vec[i - 1]:
                return False
        return True

if root.val > root.left.val or root.val < root.right.val:
    return true

要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。反例: 

递归 (极小值比较)

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    maxVal = -inf  
    def isValidBST(self, root):
        if root is None:
            return True

        left = self.isValidBST(root.left)
        # 中序遍历,验证遍历的元素是不是从小到大
        if self.maxVal < root.val: # maxval记录前一个节点值
            self.maxVal = root.val
        else:
            return False
        right = self.isValidBST(root.right)

        return left and right

优化递归(树的最小值) 

class Solution:
    pre = -inf
    def isValidBST(self, root: Optional[TreeNode]) -> bool:
        if root is None:
            return True
        # 判断左子树是否合规
        if not self.isValidBST(root.left) or root.val <= self.pre:
        # 前一个节点大于遍历到的节点则不符合
            return False
        self.pre = root.val # 记录前一个节点
        return self.isValidBST(root.right)

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值