654. 最大二叉树
中等
给定一个不重复的整数数组 nums
。 最大二叉树 可以用下面的算法从 nums
递归地构建:
- 创建一个根节点,其值为
nums
中的最大值。 - 递归地在最大值 左边 的 子数组前缀上 构建左子树。
- 递归地在最大值 右边 的 子数组后缀上 构建右子树。
返回 nums
构建的 最大二叉树 。
和前序中序、中序后序构造树很类似。构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def constructMaximumBinaryTree(self, nums: List[int]) -> Optional[TreeNode]:
index = {x: i for i, x in enumerate(nums)} # x = num[i] i是索引,x是值
def dfs(nums_l, nums_r):
if nums_r < nums_l:
return None
root = max(nums[nums_l:nums_r + 1])
# 最大值,切片语法是左闭右开要+1
leftsize = index[root] - nums_l
left = dfs(nums_l, nums_l + leftsize-1) # dfs右闭要-1
right = dfs(nums_l + leftsize + 1, nums_r)
return TreeNode(root, left, right)
return dfs(0, len(nums) - 1)
617. 合并二叉树
简单
给你两棵二叉树: root1
和 root2
。
想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。
返回合并后的二叉树。
注意: 合并过程必须从两个树的根节点开始。
递归三部曲:
1、参数和返回值:参数是两个二叉树的根节点,返回值就是合并之后二叉树的根节点。
2、确定终止条件:有结点为空时,分情况讨论
3、单层递归的逻辑(此时都不为空):中(处理)左(递归)右(递归)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def mergeTrees(self, root1: Optional[TreeNode], root2: Optional[TreeNode]) -> Optional[TreeNode]:
# 终止条件
if root1 is None and root2 is None: #根节点都为空
return None
if root2 is None and root1 is not None:#root2空,返回root1
return root1
if root1 is None and root2 is not None:
return root2
# 都不为空
# 中
merged = TreeNode(root1.val+root2.val)#创建一个新的树节点 merged,其值为 t1 和 t2 的节点值之和。
# 左
merged.left = self.mergeTrees(root1.left, root2.left)
# 右
merged.right = self.mergeTrees(root1.right, root2.right)
return merged #最后,返回合并后的新树 merged 的根节点。
700. 二叉搜索树中的搜索
简单
给定二叉搜索树(BST)的根节点 root
和一个整数值 val
。
你需要在 BST 中找到节点值等于 val
的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null
。
递归
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if root is None:
return None
else:
if root.val == val:
return root
elif root.val > val:
return self.searchBST(root.left, val)
else:
return self.searchBST(root.right, val)
return None
迭代(栈)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def searchBST(self, root: Optional[TreeNode], val: int) -> Optional[TreeNode]:
stack = [root]
while stack:
node = stack.pop()
if node is None:
continue
if node.val == val:
return node
elif node.val > val:
stack.append(node.left)
else:
stack.append(node.right)
return None
迭代
class Solution:
def searchBST(self, root: TreeNode, val: int) -> TreeNode:
while root:
if val < root.val: root = root.left
elif val > root.val: root = root.right
else: return root
return None
98. 验证二叉搜索树
中等
给你一个二叉树的根节点 root
,判断其是否是一个有效的二叉搜索树。
有效 二叉搜索树定义如下:
- 节点的左
子树
只包含 小于 当前节点的数。 - 节点的右子树只包含 大于 当前节点的数。
- 所有左子树和右子树自身必须也是二叉搜索树。
递归(判断递增序列)
利用中序递增性质,转换成数组,看是否递增
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def __init__(self):
self.vec = []
def traversal(self, root):
if root is None:
return
self.traversal(root.left)
self.vec.append(root.val) # 将二叉搜索树转换为有序数组
self.traversal(root.right)
def isValidBST(self, root):
self.vec = [] # 清空数组
self.traversal(root)
for i in range(1, len(self.vec)):
# 注意要小于等于,搜索树里不能有相同元素
if self.vec[i] <= self.vec[i - 1]:
return False
return True
❌
if root.val > root.left.val or root.val < root.right.val: return true
要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点。反例:
递归 (极小值比较)
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
maxVal = -inf
def isValidBST(self, root):
if root is None:
return True
left = self.isValidBST(root.left)
# 中序遍历,验证遍历的元素是不是从小到大
if self.maxVal < root.val: # maxval记录前一个节点值
self.maxVal = root.val
else:
return False
right = self.isValidBST(root.right)
return left and right
优化递归(树的最小值)
class Solution:
pre = -inf
def isValidBST(self, root: Optional[TreeNode]) -> bool:
if root is None:
return True
# 判断左子树是否合规
if not self.isValidBST(root.left) or root.val <= self.pre:
# 前一个节点大于遍历到的节点则不符合
return False
self.pre = root.val # 记录前一个节点
return self.isValidBST(root.right)