Multiple Qubits and Entangled States

Single Qubit Superposition

量子态可以通过一些unitary transformation转变为叠加态量子态。

如Hardmard Gate就可以将 ∣ 0 ⟩ |0\rangle 0转变为叠加态 q 0 q_{0} q0
H ∣ 0 ⟩ = ( 1 2 1 2 1 2 − 1 2 ) ( 1 0 ) = ( 1 2 1 2 ) H|0\rangle=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{l}1 \\ 0\end{array}\right)=\left(\begin{array}{l}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right) H0=(2 12 12 12 1)(10)=(2 12 1)

∣ q 0 ⟩ = 1 2 ∣ 0 ⟩ + 1 2 ∣ 1 ⟩ \left|q_{0}\right\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle q0=2 10+2 11

有趣的是,量子计算机中的任何操作均是可逆的(reversible),这也就意味着,叠加态 ∣ q 0 ⟩ |q_{0}\rangle q0可以通过变化再重新变回 ∣ 0 ⟩ |0\rangle 0

这里我们只需要对 q 0 q_{0} q0再进行一次Hardmard变换即可。

H ∣ q 0 ⟩ = ( 1 2 1 2 1 2 − 1 2 ) ( 1 2 1 2 ) = ( 1 0 ) H|q_{0}\rangle=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{l}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array}\right)=\left(\begin{array}{l}1 \\ 0\end{array}\right) Hq0=(2 12 12 12 1)(2 12 1)=(10)

对于叠加态,如 ∣ q 0 ⟩ |q_{0}\rangle q0,我们在测量时会有50%的概率得到0,50%的概率得到1。这里的概率是由振幅决定的,振幅的平方即是概率。对于 ∣ q 0 ⟩ |q_{0}\rangle q0 ∣ 0 ⟩ |0\rangle 0的振幅为 1 2 \frac{1}{\sqrt{2}} 2 1

这里的测量,是在01坐标系下来看结果的,如果我们变更坐标系,得到的结果又将不同。

我们通过qiskit来进行测量一下。

from qiskit import QuantumCircuit, Aer, assemble
from math import pi
import numpy as np
from qiskit.visualization import plot_histogram, plot_bloch_multivector
qc = QuantumCircuit(1,1)
qc.h([0])
qc.measure(0,0)
qc.draw("mpl")

在这里插入图片描述

# use local simulator
qasm_sim = Aer.get_backend('qasm_simulator')
qobj = assemble(qc)
results = qasm_sim.run(qobj,shots = 1).result()
answer = results.get_counts()

plot_histogram(answer)

这里设置为测量一次,结果自然是一种。图中为1。
在这里插入图片描述

若测量1024次,结果就接近50%的均分。
在这里插入图片描述

Multiple Qubits Superposition

以上讨论了单个qubit的系统,对于多个qubit呢?

qc = QuantumCircuit(2,2)
# Apply H-gate and measure to each qubit:
for qubit in range(2):
    qc.h(qubit)
    qc.measure(qubit,qubit)
qc.draw('mpl')

在这里插入图片描述
测量1024次,我们得到的结果仍然接近均分。
在这里插入图片描述
这里是为什么呢?我们用数学来推导。

首先对于multiple Qubits的表示方法,我们需要借助tensor product。
基本规则如下,如初始状态 ∣ 00 ⟩ = ∣ 0 ⟩ ⊗ ∣ 0 ⟩ |00\rangle=|0\rangle \otimes|0\rangle 00=00

∣ a ⟩ = [ a 0 a 1 ] , ∣ b ⟩ = [ b 0 b 1 ] |a\rangle=\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right], \quad|b\rangle=\left[\begin{array}{l}b_{0} \\ b_{1}\end{array}\right] a=[a0a1],b=[b0b1]

∣ b a ⟩ = ∣ b ⟩ ⊗ ∣ a ⟩ = [ b 0 × [ a 0 a 1 ] b 1 × [ a 0 a 1 ] ] = [ b 0 a 0 b 0 a 1 b 1 a 0 b 1 a 1 ] |b a\rangle=|b\rangle \otimes|a\rangle=\left[\begin{array}{l}b_{0} \times\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right] \\ b_{1} \times\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right]\end{array}\right]=\left[\begin{array}{l}b_{0} a_{0} \\ b_{0} a_{1} \\ b_{1} a_{0} \\ b_{1} a_{1}\end{array}\right] ba=ba=b0×[a0a1]b1×[a0a1]=b0a0b0a1b1a0b1a1

知道这些之后,再看经过Hardmard Gate作用后的系统状态。

∣ q 0 ⟩ = H ∣ 0 ⟩ = ( 1 2 1 2 1 2 − 1 2 ) ( 1 0 ) = ( 1 2 1 2 ) |q_{0}\rangle=H|0\rangle=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{l}1 \\ 0\end{array}\right)=\left(\begin{array}{l}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right) q0=H0=(2 12 12 12 1)(10)=(2 12 1)

∣ q 1 ⟩ = H ∣ 0 ⟩ = ( 1 2 1 2 1 2 − 1 2 ) ( 1 0 ) = ( 1 2 1 2 ) |q_{1}\rangle=H|0\rangle=\left(\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{l}1 \\ 0\end{array}\right)=\left(\begin{array}{l}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right) q1=H0=(2 12 12 12 1)(10)=(2 12 1)

∣ q 0 q 1 ⟩ = ∣ q 0 ⟩ ⊗ ∣ q 1 ⟩ = [ 1 2 × [ 1 2 1 2 ] 1 2 × [ 1 2 1 2 ] ] = [ 1 2 1 2 1 2 1 2 ] = 1 2 ∣ 00 ⟩ + 1 2 ∣ 01 ⟩ + 1 2 ∣ 10 ⟩ + 1 2 ∣ 11 ⟩ |q_{0} q_{1}\rangle=|q_{0}\rangle \otimes|q_{1}\rangle=\left[\begin{array}{l}\frac{1}{\sqrt{2}}\times\left[\begin{array}{l}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right] \\ \frac{1}{\sqrt{2}} \times\left[\begin{array}{l}\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{array}\right]\end{array}\right]=\left[\begin{array}{l}\frac{1}{{2}}\\ \frac{1}{{2}} \\ \frac{1}{{2}} \\ \frac{1}{{2}}\end{array}\right] = \frac{1}{2} |00\rangle+\frac{1}{2} |01\rangle + \frac{1}{2} |10\rangle + \frac{1}{2} |11\rangle q0q1=q0q1=2 1×[2 12 1]2 1×[2 12 1]=21212121=2100+2101+2110+2111

现在我们已经知道多个qubits的叠加态。

Entanglement

Rule: 可以通过tensor product分解的叠加态,不存在Entanglement.

看这个叠加态: ∣ ϕ ⟩ = 1 2 ∣ 00 ⟩ + 1 2 ∣ 11 ⟩ |\phi\rangle=\frac{1}{\sqrt{2}} |00\rangle + \frac{1}{\sqrt{2}} |11\rangle ϕ=2 100+2 111

这个叠加态并不能分解。

试想,当我们对Qubit 1 进行测量,得到0,Qubit 2的结果会是如何?

不难看出,结果一定也是0.

同样,如果我们的测量结果为1,那么Qubit 2得到的结果将会是1.

注意!当我们在qubit 1进行测量时,我们已经可以得知 qubit 2的结果!!!这种现象我们称之为Entanglement。

最神奇的是,Entanglement出现后,无论距离远近,两个量子将持续保存Entangled。2013年我国在太空与地面进行实验,证实了Entanglement的存在。

接下来,通过qiskit验证以上。

qc = QuantumCircuit(2,2)
qc.h(0)
qc.cx(0,1)
qc.measure(0,0)
qc.measure(1,1)
qc.draw("mpl")

这个circuit是我们常见构造entanglement的方法。
在这里插入图片描述
我们对两个量子位进行测量:
在这里插入图片描述
完结!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值