量子计算为算法指数加速:Shor‘s algorithm

本文探讨Shor's algorithm如何解决找到周期函数周期的问题。通过量子运算U,构建叠加态并测量,揭示了量子计算在算法指数加速中的潜力。算法涉及独特eigenstate和相位比例,以及量子相位估计(QPE)在消减无关状态中的作用。
摘要由CSDN通过智能技术生成

周期函数:
f ( x ) = a x   m o d   N f(x) = a^x \bmod{N} f(x)=axmodN
在这里插入图片描述
问题:如何找到一个周期函数的周期r?

Shor’s algorithm

Shor’s solution中函数U: U ∣ y ⟩ ≡ ∣ a y   m o d   N ⟩ U|y\rangle \equiv |ay \bmod N \rangle UyaymodN

接下来,我们可以多次作用U,便可以得到周期函数f的结果:
U ∣ 1 ⟩ = ∣ 3 ⟩ U 2 ∣ 1 ⟩ = ∣ 9 ⟩ U 3 ∣ 1 ⟩ = ∣ 27 ⟩ ⋮ U ( r − 1 ) ∣ 1 ⟩ = ∣ 12 ⟩ U r ∣ 1 ⟩ = ∣ 1 ⟩ \begin{aligned} U|1\rangle &= |3\rangle & \\ U^2|1\rangle &= |9\rangle \\ U^3|1\rangle &= |27\rangle \\ & \vdots \\ U^{(r-1)}|1\rangle &= |12\rangle \\ U^r|1\rangle &= |1\rangle \end{aligned} U1U21U31U(r1)1Ur1=3=9=27=12=1

因此第一个想法便是构建叠加态,然后测量相同f(x)的x的叠加态。

So a superposition of the states in this cycle ( ∣ u 0 ⟩ ) (|u_0\rangle) (u0) would be an eigenstate of U:

∣ u 0 ⟩ = 1 r ∑ k = 0 r − 1 ∣ a k   m o d   N ⟩ |u_0\rangle = \tfrac{1}{\sqrt{r}}\sum_{k=0}^{r-1}{|a^k \bmod N\rangle} u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值