- 博客(173)
- 收藏
- 关注
原创 claude skills 介绍
Skills 是包含指令、脚本和资源的文件夹,Claude 可以动态加载这些内容以提高在特定任务上的表现。Skills 教会 Claude 如何以可重复的方式完成特定任务,无论是使用公司的品牌指南创建文档、按照组织特定的工作流程分析数据,还是自动化个人任务。按照要求的结构创建 Skill将 Skill 文件夹打包为 ZIP 文件前往 Settings > Capabilities点击 “Upload skill” 并选择 ZIP 文件Skill 出现在列表中,可以开启或关闭注意。
2025-12-22 22:57:45
756
原创 分布式链路追踪:TraceIdFilter + MDC + Skywalking
发起服务间调用时,需要将 MDC 中的 traceId 传递到被调用服务。对象,在原生 Runnable 对象执行前,将父线程的 MDC 设置到子线程中,在原生 Runnable 对象执行结束后,清除子线程 MDC 中的内容。在子线程执行任务前,将父线程的 MDC 内容设置到子线程的 MDC 中;会解析用户配置的 pattern 表达式,得到 pattern 中需要动态解析的占位符,比如。包中,MDC 是 slf4j 的规范,对 MDC 的所有操作都会落到。,在 logback pattern 中使用。
2025-12-22 10:49:47
485
原创 服务器日志排查
后端开发来说,熟练掌握 Linux 的日志分析命令是基本功,整理几一些基于 、、、、 的日志查询场景,希望能帮你快速定位问题。很多新手习惯用 ,但对于大文件, 会导致屏幕刷屏,还容易把终端卡死。 才是实时监控的神器。真实场景 A:服务发版启动监控每次发版重启服务时,我们都需要确认 Spring Boot 是否启动成功,或者有没有初始化报错。真实场景 B:配合测试复现 Bug测试同学说:我现在点一下按钮,你看看后台有没有报错。此时不需要看历史日志,只需要盯着最新的输出。less如果需要查看之前
2025-12-22 10:37:20
414
原创 超越对话:AI 智能体如何自主完成复杂任务?
Agent = LLM + 记忆 + 规划能力 + 工具使用LLM:核心大脑记忆:短期记忆(上下文)+ 长期记忆(向量数据库)规划:任务拆解、子目标设定、反思与自我批评工具:搜索引擎、API、代码解释器、计算器等正如 Lilian Weng 所说:AI 智能体不仅是技术的进化,更是我们与机器协作方式的重新定义。从“对话”到“行动”,从“问答”到“成果”,AI 正在成为我们真正的代理人与合作者。
2025-12-19 17:41:00
516
原创 大模型微调原理:从通用到专属,释放 AI 真正潜能
微调是释放潜能的关键(Fine-tuning Unlocks Potential)它弥合了通用模型与特定需求之间的差距,实现 AI 的真正价值。“五步法”是成功的路线图(The '5-Step Method' is the Roadmap)遵循结构化流程(模型→数据→预处理→训练→评估)是高效、可复现微调的保证。效率与效果可以兼得(Efficiency Meets Performance)以 LORA 为代表的参数高效微调(PEFT)技术,在保证效果的同时,极大降低资源门槛。
2025-12-19 17:27:09
247
原创 AI Agent 三大核心技术:MCP、Function Calling、A2A 协议
AI Agent 是一个基于大语言模型(LLM)的系统,它能够自主地感知环境、进行决策并执行动作。LLM 是 AI Agent 的“大脑”:提供核心的推理、规划和决策能力。AI Agent 是 LLM 的“身体”:使其能够突破数字世界的束缚,与外部工具和服务进行交互。关键对比没有 Agent 的 LLM:一个强大的对话者,但其行动受限于生成的文本。拥有 Agent 的 LLM:一个能够执行任务的行动者,能将“思考”转化为“行动”。技术交互关系核心作用隐喻MCP。
2025-12-19 17:17:03
416
原创 spring Ai Alibaba 和 langChain4j的区别
Spring AI Alibaba:2024 年由 Spring 中国 & 阿里云联合开源,目标是“让 Java 企业 5 分钟接入通义/百炼”,属于 Spring 官方生态的“AI 子项目”,直接对标 Spring Data、Spring Cloud。需要先吃透“Chain、Agent、Tool、Memory”整套概念,例子多、社区活跃(Discord 日活 2 k+),GitHub issue 回复平均 4 小时;),支持“让 LLM 自己决定调哪个 Java 方法”,并带循环、条件分支、异常重试。
2025-12-10 21:26:27
601
原创 Workflow vs Agents:核心区别详解
Workflow就像是精心编排的舞蹈,每个动作都事先安排好;而Agents更像是即兴表演的演员,能够根据观众反应调整表演。在现代AI应用中,两者往往不是竞争关系,而是互补关系——Workflow提供稳定的框架,Agents在其中承担需要智能决策的环节,共同构建既可靠又智能的系统。
2025-12-10 17:39:54
401
原创 A2A 协议
由 Google 于 2025 年 4 月牵头开源并捐赠给 Linux 基金会,目标是把“各自为政”的大模型/Agent 连接成可协作的“多智能体系统”。A2A 协议用“一张名片 + 一个任务 + 一套 JSON-RPC 消息”让异构 Agent 跨越框架与云平台自由协作,是构建可扩展、多智能体系统的“TCP/IP 时刻”两者互补,官方口号是 “A2A ❤️ MCP”——先用 MCP 让单个 Agent 获得工具与数据,再用 A2A 让多个 Agent 协同完成复杂任务。
2025-12-09 16:55:10
332
原创 Agent Infra到底是什么?【AI基建】
后续的步骤可以从这个暂存的工作记忆里调取信息,放入上下文,帮助大脑决策。同时,有的Agent我们还希望它能实现个性化,让Agent可以认识我们,让他记住你的个人信息,比如这位用户对花生过敏,他喜欢的球队是某某队。它有聪明的大脑——模型层,灵活的神经中枢——调度层,靠谱的记忆——记忆层,能干的手脚和强大的工具箱——工具层,健康的免疫系统和行为准则——运维治理层,以及跟同伴协作融入集体的方式——社会层。而且它执行任务的时候,比如看你的浏览器时,就霸占了你的电脑,让你做不了别的事,还有抽风删掉你文件的风险。
2025-12-09 13:47:53
933
原创 检索增强生成 RAG
把私域数据切成块 → 变成向量 → 放数据库 → 用户问题实时找最像的块 → 塞给 LLM → 秒级生成专业答案。RAG 不是银弹,却是 90% 企业让大模型“说人话、说行话”的最短路径。
2025-12-01 22:16:35
683
原创 Prompt Engineering 基础技巧完全指南
万能模板你是一位[专业角色]。请完成以下任务:[具体任务]。要求:1. [要求1]2. [要求2]3. [要求3]工作步骤:1. [步骤1]2. [步骤2]请以[格式]返回结果。[上下文/输入内容]
2025-12-01 17:34:02
968
原创 MessageChatMemoryAdvisor + MongoDB 完整配置指南
默认使用内存存储,生产环境需配置 MongoDB 实现持久化。以下是。
2025-12-01 17:21:28
330
原创 MessageChatMemoryAdvisor 默认存储位置详解
场景存储方案说明本地开发/测试默认内存存储方便快捷,无需额外配置生产环境数据持久化,支持分布式特殊需求自定义实现灵活可控,满足特定业务核心建议:在# 示例:使用数据库存储。
2025-12-01 17:20:20
168
原创 MessageChatMemoryAdvisor 使用指南
是 Spring AI 中实现的核心组件,它能自动将历史消息添加到当前请求中,让大模型具备上下文理解能力。
2025-12-01 17:13:12
363
原创 Spring AI中的Advisor顾问角色详解
/ 自定义日志Advisor示例@Override// 前置处理:记录请求// 执行后续Advisor或模型调用// 后置处理:记录响应典型自定义场景Re-Reading(Re2)模式:强制模型重新阅读问题以提升复杂推理准确率特定业务逻辑增强:如简历优化场景中的专业顾问模式Spring AI Advisor通过拦截增强机制,将AI应用中的横切关注点(日志、记忆、安全、RAG等)解耦为可复用的组件,极大提升了开发效率和代码可维护性。
2025-12-01 17:10:11
608
原创 对比评测Dify vs Coze
其核心理念是提供一体化的后端即服务与LLMOps平台,为AI应用的整个生命周期提供一个统一、无缝的环境。Dify采用高度集成的架构设计,将所有核心功能紧密集成在一起,降低了部署和管理的复杂性。Dify的集成化架构降低了部署和管理的复杂性,开发者可以在一个无缝环境中工作,所有工具触手可及。Dify的Agent设计强调单Agent的可控性,适合功能明确的生产场景。Coze通过Coze Loop提供全链路观测能力,完整记录从输入到输出的每个处理环节,包括Prompt解析、模型调用和工具执行等关键节点。
2025-12-01 12:51:25
642
原创 PGVector 索引选型(IVFFlat vs HNSW)
若业务既有“毫秒级小查询”又有“海量批处理”,可建双索引,让应用端按场景选索引。更友好,IVFFlat 大幅更新后需重建索引才能保持精度。,IVFFlat 需要先采样训练(表中无数据会报错);与暴力结果对比,差值 > 2 % 就调参。一、核心差异速览(百万条 128 维实测)(图结构占内存,但延迟可做到个位数毫秒);”四个维度给你可直接落地的选型建议。(内存占用低,构建快,易横向扩展)。在 pgvector 里,
2025-11-25 22:54:16
395
原创 PGVector 检索性能优化完整指南
测试驱动:使用真实数据测试不同配置,关注 P99 延迟和召回率渐进优化:从默认参数开始,逐步调整关键参数监控先行:建立性能基准,持续监控查询延迟和索引使用混合架构:热数据用 HNSW,冷数据用 IVFFlat 或分区表事务级调优:对重要查询动态设置ef_search,平衡精度与性能通过以上优化策略,可在保持95% 以上召回率的同时,将查询延迟从秒级降至毫秒级,充分发挥 pgvector 与 PostgreSQL 生态融合的优势。
2025-11-21 09:51:41
1125
原创 知识图谱的解释
知识图谱就是把人类世界的事实拆成“主语-谓语-宾语”的海量网络,存进图数据库,供机器查询、推理、预测;它让 AI 不仅“认识字”,还“懂关系”,是大模型减少幻觉、实现可信推理的“外挂记忆”。
2025-11-20 23:06:57
638
原创 PGVector
PGVector 是 PostgreSQL 的一个开源扩展,它把“向量数据库”能力直接集成到 Postgres 里:既能存传统关系数据,也能存高维向量,并在 SQL 内完成近似/精确相似度搜索,不需要再部署一套专用向量库。下面按“安装-建表-导入-查询-调优”五步给出最小可运行示例,所有命令在 psql 里直接执行即可。你仍用熟悉的 SQL、事务、备份、权限体系,就能把 Postgres 当成企业级向量数据库使用,适合 RAG、推荐、语义搜索等场景。四、相似度查询(SQL 原生)内积(负内积最小=最相似)
2025-11-20 22:22:16
213
原创 RAG 的幻觉问题详解
RAG(Retrieval-Augmented Generation,检索增强生成)的。—— 即使给了参考答案,它还是会自由发挥。"2023年,特斯拉在上海工厂的产能达到了100万辆。(Hallucination)是指模型在生成回答时,"2023年,特斯拉在上海工厂的产能达到了。:关键信息被截断,模型基于不完整上下文猜测。:多篇文档信息冲突或零散,模型强行整合。,产生看似合理但与事实不符的信息。检索内容,加入训练数据中的偏见。检索内容,即使内容有误,或者。:返回的文档与问题相关性低。
2025-11-20 11:11:46
411
原创 费曼学习法
"想象你在排队,你想知道自己排第几位。可以问前面的人'你是第几位',他也不知道,于是他又问更前面的人...直到问到第一个人'你是第1位'。然后这个答案往回传,每个人加1,最后你就知道自己是第5位了。"递归是一种在函数定义中使用函数自身的方法,它包含基准条件和递归条件,通过不断缩小问题规模来求解..."选择你要学习的知识点(比如"冒泡排序算法"),通过阅读、看视频等方式初步理解它。:现在找一张纸,写下你最近学到的一个概念,开始你的第一次费曼练习!: "没有索引就像翻书找内容,有索引就像查目录直接翻到页码"
2025-11-19 18:06:06
922
原创 Java 中 DTO 和 VO 的区别详解
DTO(Data Transfer Object)和 VO(Value Object / View Object)是 Java 开发中用于不同层次间数据传递的对象,但它们的。:Service 层查询用户和订单数据,打包返回给 Controller。:Service 层返回数据给 Controller 层、微服务间调用。,再反推 DTO 需要聚合哪些数据,最后确定 DO 的数据库设计。:Controller 层转换 DTO 为 VO,适配前端展示。的数据对象,封装页面需要的数据。
2025-11-19 17:47:44
921
原创 Rest软件架构
用于设计分布式系统中的网络应用程序。它不是标准或规范,而是一组约束条件和设计原则。:Spring Cloud Gateway 或 AOP。:资源的具体表现形式(JSON、XML、HTML):POST 创建成功(返回 Location):DELETE、PUT 成功(无返回体):一切皆为资源(用户、订单、文章等):通过 HTTP 动词改变资源状态。:多次执行同一操作,结果相同。:GET、PATCH 成功。:使用 JWT(无状态):不修改服务器资源。:从 V1 开始设计。
2025-11-19 13:34:52
640
原创 CQRS(命令查询职责分离)详解
CQRS(Command Query Responsibility Segregation)是一种架构模式,将**写操作(命令)客户端命令处理器领域模型事件存储事件总线查询处理器事件消费者。:简单项目 → 传统 CRUD + MyBatis-Plus。读操作(查询)**分离成两个独立的模型。社交媒体(读多写少,动态 feed):DDD 实践,需要保护业务不变量。电商订单系统(高并发查询订单列表):读操作是写的 100 倍以上。:读写逻辑简单,没有复杂度。:报表、搜索、多维度统计。:查询需要毫秒级响应。
2025-11-19 13:27:58
904
原创 事件驱动架构
的异步、松耦合架构模式,系统组件通过发布和订阅事件进行通信,而非直接调用。:设备数据上传 → 实时分析 → 告警通知 → 存储。:订单 → 库存 → 支付 → 发货,各环节松耦合。:交易事件 → 风险计算 → 决策 → 阻断/放行。:事件是"已发生的事实",命令是"请求执行的操作":收集 → 过滤 → 分析 → 告警。:日志收集、大数据处理、流式计算。:实时通知、轻量级消息、缓存更新。:完整审计、时间旅行、调试方便。:读写分离、性能优化、视图灵活。:企业应用、复杂路由、事务消息。:高吞吐量、分布式日志。
2025-11-19 13:18:21
660
原创 高效阅读与理解文章的实用技巧详解
阅读后,用自己的话总结文章核心内容,尝试讲解给他人听。这不仅考验你的理解力,还能发现未掌握的部分。高效阅读和理解文章,不是天生的能力,而是可以通过科学方法训练出来的技能。希望上述方法能为你的学习和工作带来帮助。
2025-11-13 17:19:34
416
原创 如何高效利用上下文信息生成文章
生成文章时,有效利用上下文信息是关键。上下文信息提供了背景和相关内容,帮助确保文章的相关性和准确性。通过上述步骤,能够高效生成内容严谨且切合实际的文章。如果您有特定主题或更多具体内容需求,欢迎继续提问。
2025-11-13 17:12:47
280
原创 常用Google的collect下的API方法
看到 new HashMap / ArrayList 前先想想 Guava 有没有现成的” —— 基本就能少写一半样板代码。com.google.common.collect 把 不可变、并发、多维、区间、双向、比较器、工具类 一网打尽;3️⃣ 集合工具类(比 Apache Commons 更顺手)2️⃣ 新集合类型(解决 JDK 没有的痛点)4️⃣ 比较器工厂(再也不用写一堆 if)1️⃣ 不可变集合(最常用,线程安全)6️⃣ 不可变集合建造者(链式写法)5️⃣ 缓存视图(不额外引包)
2025-09-08 13:37:52
230
原创 动态线程池中修改核心线程数比当前线程数要少,会不会影响正在执行的线程任务
不会。在里调把核心线程数设得比当前活动线程数小时,中断或回收任何正在执行的任务。getTask()nullrun()因此,,只是当这批任务完成后,线程池会逐步把总线程数收缩到新的核心线程数。
2025-09-08 13:33:14
257
原创 写时复制(Copy-on-Write)模式
通过这种方式,可以避免多个线程同时访问同一个共享数据造成的竞争和冲突。不可变对象的写操作往往都是使用 Copy-on-Write 方法解决的,当然 Copy-on-Write 的应用领域并不局限于 Immutability 模式。Copy-on-Write 才是最简单的并发解决方案,很多人都在无意中把它忽视了。它是如此简单,以至于 Java 中的基本数据类型 String、Integer、Long 等都是基于 Copy-on-Write 方案实现的。
2025-09-08 13:20:10
393
原创 异步编程CompletionService
是 Java 并发包()里的一个。它把「提交任务」和「拿结果」两件事解耦:你只管往里扔任务;它帮你盯着谁先跑完,让你取结果,而不是按提交顺序。
2025-09-08 11:51:58
184
原创 JDK21虚拟线程
Java 虚拟线程(Virtual Threads)是 Java 21 正式推出的革命性并发特性,由 Project Loom 孵化而来。
2025-09-02 09:34:17
527
原创 Nginx 负载均衡和缓存配置
根据客户端的 IP 地址将请求分发到固定的后端服务器,适用于需要会话保持的场景。代理缓存是 Nginx 缓存后端服务器响应的一种方式,适用于动态内容的缓存。:将请求分发到当前连接数最少的服务器,适用于处理时间较长的请求。:定义缓存的存储路径、层级结构、缓存区域名称、最大缓存大小等。:为每个服务器分配不同的权重,权重越高,分配到的请求越多。:在某些情况下使用过期的缓存,如后端服务器错误或超时。:定期检查缓存命中率,评估缓存策略的有效性。:部署新版本时,预先加载缓存,避免缓存穿透。
2025-08-20 23:49:22
700
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅