发展人工通用智能有很多技术方向,其中计算机科学驱动的深度学习研究方向 (DNN) 和神经科学驱动的仿脑研究方向 (SNN) 是两个最主要的途径,学术界和产业界研发了相应的专用计算处理器,“网络加速器芯片”和“神经形态芯片”,掀起了一股人工智能芯片的热潮。目前,将两者融合的模式被认为是最佳解决方案之一。
灵汐科技研制的类脑计算芯片领启 ™ KA200,实现了同时支持计算机科学和神经科学的神经网络模型,并支持两者融合的混合神经网络计算模型,开启了探索通用人工智能的新路径。
提名项目名称:类脑芯片领启 ™ KA200
提名项目单位:北京灵汐科技有限公司、清华大学
作为首款具有通用编程能力的 SNN/ANN 深度融合的类脑计算芯片,领启 ™ KA200 采用异构融合众核、存算一体的芯片架构,单芯片集成25万神经元和2500万突触(稠密模式),可扩展支持200万神经元和20亿突触的集成计算(稀疏模式)。KA200可高效支持卷积脉冲神经网络,支持新型类脑算法。此外,芯片针对神经网络的连接稀疏性、事件稀疏性,对脑仿真执行效率进行高度优化,较典型的冯诺依曼架构的芯片可实现百倍以上的计算效率提升。
基于“类脑计算完备性”的理论,灵汐科技还开发了类脑软件LynOS, 支持深度学习、高性能计算、机器学习和类脑计算等算法的高效图优化和全自动编译,支持多种算法模型的融合异构,实现应用算法的快速部署。此外,灵汐科技自主研发了面向深度脉冲